实现获取 下一个排列 的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须 原地 修改,只允许使用额外常数空间。
示例 1:
输入:nums = [1,2,3]
输出:[1,3,2]
示例 2:
输入:nums = [3,2,1]
输出:[1,2,3]
示例 3:
输入:nums = [1,1,5]
输出:[1,5,1]
示例 4:
输入:nums = [1]
输出:[1]
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 100
分析:题目要求在常数空间内解决此问题。
在当前序列不是字典序最大的时候,我们希望找到一个序列大于当前这个序列,且变大的幅度尽可能小。
具体:我们希望找到一个左边的较小数与右边一个较大数进行交换,这样才能让序列变大。
同时我们要求这个较小数尽可能靠右,同时较大数尽可能小。当交换完成后,较大数右边的部分要按照升序重新排序,这样可以保证新排列大于原来排列的情况下,使得变大的幅度尽可能小。
做法:
对于长度为n的排列a
1.首先从后向前查找第一个顺序对(i,i+1),满足a[i] < a[i+1],这样较小数是a[i,且]a[i+1]…a[n]必然是下降序列。
2.找到了顺序对,那么在区间[i+1,n]中从后向前查找第一个元素j满足a[j] > a[i],这样这个较大数就是a[j]
3.交换,a[i]和a[j],可以知道此时区间[i+1,n-1]必为降序,此时我们可以使用双指针法反转区间,无需对其进行排序。
class Solution {
public void nextPermutation(int[] nums) {
int i = nums.length - 2;
//找到第一个顺序对 使得a[i] < a[i+1]
while(i >= 0 && nums[i] >= nums[i + 1]){
i--;
}
if(i >= 0){
//如果i大于等于0 说明找到了一个顺序对
int j = nums.length - 1;
while(j >= 0 && nums[i] >=nums[j]){
j--;
}
//将这两个数进行交换
swap(nums,i,j);
}
//进行反转
reverse(nums,i + 1);
}
public void swap(int[] nums,int i,int j){
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
public void reverse(int[] nums,int start){
int left = start,right = nums.length - 1;
while(left < right){
swap(nums,left,right);
left++;
right--;
}
}
}