机器学习基础

参考于一些大佬博主,在此致谢!
https://www.jianshu.com/p/0ee0700da382
https://www.cnblogs.com/jialin0421/p/8988824.html
https://blog.csdn.net/Ga4ra/article/details/78935537

【第0章 数学基础】

线性代数

  1. 标量就是一个单独的数,一般用小写的的变量名称表示。
  2. 向量就是一列数,这些数是有序排列的
    在这里插入图片描述
  3. 矩阵是二维数组,我们通常会赋予矩阵粗体的大写变量名称
    在这里插入图片描述
  4. 张量:标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量
    在机器学习中,我们经常使用被称为范数(norm) 的函数衡量矩阵大小。
    Lp 范数如下:
    在这里插入图片描述
    在这里插入图片描述
  5. 范数: L1范数和L2范数很常见,主要用在损失函数中起到一个限制模型参数复杂度的作用。
  6. 特征分解:只有对可对角化的矩阵才可以进行特征分解。将矩阵分解成一组特征向量和特征值。
    方阵A的特征向量是指与A相乘后相当于对该向量进行缩放的非零向量:
    在这里插入图片描述
    特征分解后,矩阵A可这样表示:
    在这里插入图片描述
  7. 奇异值分解(SVD)对于不是方阵的矩阵,奇异值分解是对特征分解的一种扩展在这里插入图片描述
    其中U和V都是正交矩阵,D是对角矩阵(注意,D不一定是方阵)。对角矩阵D对角线上的元素被称为矩阵A的奇异值。矩阵U的列向量被称为左奇异向量,矩阵V 的列向量被称右奇异向量。
  8. Moore-Penrose伪逆
    对于非方矩阵逆矩阵没有定义。但是可以通过矩阵A的左逆B来求解线性方程:
    在这里插入图片描述
    在这里插入图片描述

求法我觉得用具体例子更容易明白:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

距离

  1. 欧氏距离(Euclidean Distance)
    在这里插入图片描述

python中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.sqrt(np.sum(np.square(x-y)))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X)
  1. 曼哈顿距离(Manhattan Distance)
    哈顿距离也称为城市街区距离(City Block distance)。
    在这里插入图片描述
import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.sum(np.abs(x-y))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X,'cityblock')
  1. 切比雪夫距离 ( Chebyshev Distance )
    国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。
    在这里插入图片描述
import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.max(np.abs(x-y))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X,'chebyshev')
  1. 闵可夫斯基距离(Minkowski Distance)
    闵氏距离不是一种距离,而是一组距离的定义。
    在这里插入图片描述
    根据变参数p的不同,闵氏距离可以表示一类的距离。
    当p=1时,就是曼哈顿距离
    当p=2时,就是欧氏距离
    当p→∞时,就是切比雪夫距离

(2)闵氏距离的缺点
  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。
  举个例子:二维样本(身高,体重),其中身高范围是150~ 190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。
  
闵氏距离的缺点主要有两个:
(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。
(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解,p=2
d1=np.sqrt(np.sum(np.square(x-y)))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=pdist(X,'minkowski',p=2)
  1. 标准化欧氏距离 (Standardized Euclidean distance )
    (1)标准欧氏距离的定义
      标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。
      标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:在这里插入图片描述

标准化后的值 = ( 标准化前的值 - 分量的均值 ) /分量的标准差
  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:
在这里插入图片描述
  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

X=np.vstack([x,y])

#方法一:根据公式求解
sk=np.var(X,axis=0,ddof=1)
d1=np.sqrt(((x - y) ** 2 /sk).sum())

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
d2=pdist(X,'seuclidean')
  1. 马氏距离(Mahalanobis Distance)
    (1)马氏距离定义
    在这里插入图片描述
    若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。
import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#马氏距离要求样本数要大于维数,否则无法求协方差矩阵
#此处进行转置,表示10个样本,每个样本2维
X=np.vstack([x,y])
XT=X.T

#方法一:根据公式求解
S=np.cov(X)   #两个维度之间协方差矩阵
SI = np.linalg.inv(S) #协方差矩阵的逆矩阵
#马氏距离计算两个样本之间的距离,此处共有10个样本,两两组合,共有45个距离。
n=XT.shape[0]
d1=[]
for i in range(0,n):
    for j in range(i+1,n):
        delta=XT[i]-XT[j]
        d=np.sqrt(np.dot(np.dot(delta,SI),delta.T))
        d1.append(d)
        
#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
d2=pdist(XT,'mahalanobis')

马氏优缺点:
1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;

2)在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。

3)还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6)和(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。

4)在实际应用中“总体样本数大于样本的维数”这个条件是很容易满足的,而所有样本点出现3)中所描述的情况是很少出现的,所以在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。

缺点:它的缺点是夸大了变化微小的变量的作用。

  1. 夹角余弦
    夹角余弦的取值范围为[-1,1],可以用来衡量两个向量方向的差异;夹角余弦越大,表示两个向量的夹角越小;
    当两个向量的方向重合时,夹角余弦取最大值1;
    当两个向量的方向完全相反时,夹角余弦取最小值-1。
    机器学习中用这一概念来衡量样本向量之间的差异,其数学表达式如下:
    在这里插入图片描述
from numpy import *
vector1 = mat([1,2,3])
vector2 = mat([4,5,6])
print dot(vector1,vector2)/(linalg.norm(vector1)*linalg.norm(vector2))
  1. 汉明距离
    汉明距离定义的是两个字符串中不相同位数的数目。
    例如:字符串‘1111’与‘1001’之间的汉明距离为2。
    信息编码中一般应使得编码间的汉明距离尽可能的小。
    汉明距离的Python实现:
from numpy import *
matV = mat([1,1,1,1],[1,0,0,1])
smstr = nonzero(matV[0]-matV[1])
print smstr
  1. 杰卡德相似系数
    两个集合A和B的交集元素在A和B的并集中所占的比例称为两个集合的杰卡德相似系数,用符号J(A,B)表示,杰卡德相似系数是衡量两个集合的相似度的一种指标。数学表达式为:
    在这里插入图片描述
  2. 杰卡德距离
    与杰卡德相似系数相反的概念是杰卡德距离,其定义式为:在这里插入图片描述
from numpy import *
import scipy.spatial.distance as dist
matV = mat([1,1,1,1],[1,0,0,1])
print dist.pdist(matV,'jaccard')

概率论

  1. 贝叶斯在这里插入图片描述
  2. 方差和协方差在这里插入图片描述
    3.常见分布函数
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    Lagrange乘子法
    在这里插入图片描述
    最大似然估计
    最大似然也称为最大概似估计,即:在“模型已定,参数θ未知”的情况下,通过观测数据估计未知参数θ 的一种思想或方法。
    在这里插入图片描述

信息论

在这里插入图片描述

【第1章 绪论】
https://www.cnblogs.com/hust-chen/p/8643897.html
【第2章 模型评估与选择】
https://www.cnblogs.com/hust-chen/p/8643973.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值