0. 二分查找
正常实现:
Input : [1,2,3,4,5]
target : 3
return the index : 2
def binarySearch(nums, target):
l, r = 0, len(nums) - 1
while l <= h:
mid = l + (r - l) // 2
if nums[mid] == target:
return mid
elif nums[mid] > target:
r = mid - 1
elif nums[mid] < target:
l = mid + 1
return -1
时间复杂度:二分查找每次将区间减半,使得时间复杂度为 O(logN)
。
mid 的计算:直接使用 (l + r) // 2
可能会出现加溢出,也就是说加法的结果大于整型能够表示的范围。但 l + (r - l) // 2
不会造成溢出。
1. 求开方
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
一个数 x 的开方 sqrt
一定在 0 ~ x 之间,并且满足 sqrt == x // sqrt
。可以利用二分查找在 0 ~ x
之间查找 sqrt
。
对于 x = 8
,它的开方是 2.82842...
,最后应该返回 2 而不是 3。在循环条件为 l <= r
并且循环退出时,r 总是比 l 小 1,也就是说 r = 2,l = 3,因此最后的返回值应该为 r 而不是 l。
class Solution:
def mySqrt(self, x: int) -> int:
if x <= 1: return x
l, r = 1, x
while l <= r:
mid = l + (r - l) // 2
sqrt = x // mid
if mid == sqrt:
return mid
elif mid > sqrt:
r = mid - 1
elif mid < sqrt:
l = mid + 1
return r
2. 大于给定元素的最小元素
给定一个有序的字符数组 letters 和一个字符 target,要求找出 letters 中大于 target 的最小字符,如果找不到就返回第 1 个字符。
输入:
letters = ["c", "f", "j"]
target = "a"
输出: "c"
输入:
letters = ["c", "f", "j"]
target = "c"
输出: "f"
class Solution:
def nextGreatestLetter(self, letters: List[str], target: str) -> str:
n = len(letters)
l, r = 0, n - 1
while l <= r:
mid = l + (r - l) // 2
if letters[mid] <= target:
l = mid + 1
else:
r = mid - 1
return letters[l] if l < n else letters[0]
3. 有序数组的 Single Element
给定一个只包含整数的有序数组,每个元素都会出现两次,唯有一个数只会出现一次,找出这个数。
输入: [1,1,2,3,3,4,4,8,8]
输出: 2
令 index
为 Single Elemen
t 在数组中的位置。在 index
之后,数组中原来存在的成对状态被改变。如果 mid
为偶数,并且 mid + 1 < index
,那么 nums[mid] == nums[mid + 1]
;mid + 1 >= index
,那么 nums[mid] != nums[mid + 1]
。
偶奇 偶奇 ... SigleElement 奇偶 奇偶...
从上面的规律可以知道,如果 nums[mid] == nums[mid + 1]
,那么 index
所在的数组位置为 [mid + 2, r]
,此时令 l = mid + 2
;如果 nums[mid] != nums[mid + 1]
,那么 index
所在的数组位置为 [l, mid]
,此时令 r = mid
。
因为 r 的赋值表达式为 r = mid
,那么循环条件也就只能使用 l < r
这种形式。
class Solution:
def singleNonDuplicate(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l < r:
mid = l + (r - l) // 2
if mid % 2 == 1: # 保证 l、r、mid 都在偶数位,使得查找区间大小一直都是奇数
mid -= 1
if nums[mid] == nums[mid + 1]:
l = mid + 2
else:
r = mid
return nums[l]
4. 第一个错误的版本
给定一个元素 n 代表有 [1, 2, ..., n]
版本,在第 x 位置开始出现错误版本,导致后面的版本都错误。可以调用 isBadVersion(int x)
知道某个版本是否错误,要求找到第一个错误的版本。
如果第 mid
个版本出错,则表示第一个错误的版本在 [l, mid]
之间,令 r = mid - 1
;否则第一个错误的版本在 [mid + 1, r]
之间,令 l = mid + 1
。
# The isBadVersion API is already defined for you.
# @param version, an integer
# @return a bool
# def isBadVersion(version):
class Solution:
def firstBadVersion(self, n):
"""
:type n: int
:rtype: int
"""
l, r = 1, n
while l <= r:
mid = l + (r - l) // 2
if isBadVersion(mid):
r = mid - 1
else:
l = mid + 1
return l
5. 旋转数组的最小数字
假设按照升序排序的数组在预先未知的某个点上进行了旋转。请找出其中最小的元素。
输入: [3,4,5,1,2]
输出: 1
class Solution:
def findMin(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l < r:
mid = l + (r - l) // 2
if nums[mid] <= nums[r]:
r = mid
else:
l = mid + 1
return nums[l]
6. 查找区间
给定一个按照升序排列的整数数组 nums
,和一个目标值 target
。找出给定目标值在数组中的开始位置和结束位置。你的算法时间复杂度必须是 O(log n)
级别。如果数组中不存在目标值,返回 [-1, -1]
。
输入: nums = [5,7,7,8,8,10], target = 8
输出: [3,4]
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
def findFirst(nums, target):
l, r = 0, len(nums)
while l < r:
mid = l + (r - l) // 2
if nums[mid] >= target:
r = mid
else:
l = mid + 1
return l
first = findFirst(nums, target)
last = findFirst(nums, target + 1) - 1
if first == len(nums) or nums[first] != target:
return [-1, -1]
else:
return [first, max(first, last)]