[环境配置] 配置深度学习(tensorflow1.8)开发环境(一)

本文详细介绍了在Windows和Ubuntu上配置深度学习环境的过程,包括安装Anaconda、Visual Studio 2017、CUDA、cuDNN,以及如何通过pip安装TensorFlow-GPU 1.8。对于Ubuntu,还涉及到驱动下载、安装、配置包等步骤,确保GPU支持。完成所有步骤后,通过运行Python代码验证安装成功。
摘要由CSDN通过智能技术生成

 

 

Windows配置GPU环境:

  1. 安装anaconda: 链接:https://pan.baidu.com/s/1RFWfA7mDaxxi31rf3XCC3g  提取码:as1x
  2. 安装Visual Studio 2017: https://visualstudio.microsoft.com/zh-hans/downloads/
  3. 安装cuda: 链接:https://pan.baidu.com/s/1WID6vH9N7N_4s_hP1QQ6qg   提取码:fqvg
  4. 将cudnn文件夹里的内容拷贝到CUDA的安装目录并覆盖相应的文件夹
  5. 打开cmd,输入命令:pip install tensorflow-gpu==1.8
  6. 测试:打开cmd,输入python
  7. 然后输入import tensorflow as tf ,没有报错说明安装成功

     若没有GPU,省略2,3,4步骤。第五步改为:pip install tensorflow==1.8

 

Ubuntu配置GPU环境:

Ubuntu配置过程比较复杂,主要参考链接:

https://blog.csdn.net/u010159842/article/details/54344683

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值