自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 资源 (2)
  • 收藏
  • 关注

原创 NFC之NDEF

IL标志是一个1位字段,如果设置,则指示ID_LENGTH字段作为单个八位字节出现在报头中。如果IL标志为零,则ID_LENGTH字段从记录头中省略,ID字段也从记录中省略。SR标志是一个1位字段,如果被设置,则指示PAYLOAD_LENGTH字段是单个八位字节。CF标志是一个1位字段,指示这是分块有效载荷的第一个记录块或中间记录块。MB标志是一个1位字段,当其被设置时,表示NDEF消息的开始。ME标志是一个1位字段,当其被设置时,表示NDEF消息的结束。手机碰一碰NFC芯片弹出。

2024-10-19 16:53:43 938

原创 运算类型记录

自己学习看。

2023-07-30 22:09:38 381

原创 基于springboot+shiro+Mybatis-Plus+Vue的前后端分离简易教务系统学习笔记

Views主要放一些界面;Router 就是路由;另外一种启动方式,使用IDEA打开刚刚创建的education-front项目。点击链接 http://localhost:8080/ 效果如下。VUE是热部署,修改代码后直接保存就好,不需要重新启动代码。Scripts中选择serve即可,然后点击 ok。第三种启动方式,需要在IEDA上添加配置。在等待创建的时候,cmd窗口不能关闭。使用cmd打开,输入vue ui。选择 手动, 点击 下一步。选择 创建项目,不保存预设。点击 + ,选择 npm。

2023-07-16 20:36:19 278

原创 restTemplate转发Https请求

【代码】restTemplate转发Https请求。

2023-06-05 23:08:41 571

原创 OpenEditor的使用

同理 IN2,MyOut分类为输出,进行连接。创建 输入输出模块,名称和各种属性自己定义。可以看到,两根线是红色的,表示数据类型错误。右击中间区域, 选 添加 -> 变量。鼠标点击左边空白区域,选择 功能块。选择自己定义的表达式,并分类为输入。在项目目中生成.xml文件内容为。点击 下面的图标,开始模拟。修改数据类型为Byte。将SHL拖到中间区域。

2023-05-21 22:10:40 483

原创 使用Mybatis-plus在xml文件中实现自己定义的sql逻辑

serverTimezone=GMT%2B8 中的my_batis_plus为自己创建的数据库,修改为自己对应的数据库。8、在对应的Mapper接口也要声明对应的函数,并且接口上添加@Repository注解,继承BaseMapper的时候写上对应的实体类User。mybatis-plus.mapper-locations中com/demo/mapper/xml/修改为自己的.xml文件对应的路径。6、创建实体类User,添加@Data注解,不用在自己去写get和set方法。

2023-04-16 21:53:31 3728 1

原创 python 将元组中浮点类型的元素转为整型

(1)只需要转换为整数而不进行舍入new_t = tuple(map(int, old_t))(2)需要舍入整数new_t = tuple(map(round, old_t))

2022-01-26 15:19:06 3264

原创 scanner.nextInt与scanner.nextLine的使用

第一种第二种

2021-08-08 21:33:35 242

原创 秋招笔试记录

题目描述:小华刚刚参加了一个编译器课程,他想设计实现自己的编译器。首先,他设计了一种语言,他的语言最大支持N个字不同的字符,并且他规定了由这些字符组成的ID,任何ID的长度需要大于等于1且小于等于L个字符,他希望设计一个程序知道他的语言总共能组成多少个ID。例如,当N=2(假设字符可以是0或1),并且L=3时,他具有如下的ID:{0,1,00,01,10,11,000,001,010,011,100,101,110,111},因此当N=2,L=3时总共有14中ID。你需要编写一个程序,可以帮助小华找到可

2021-08-08 14:59:34 2881 1

转载 尚硅谷java面试题第三季网友笔记

网友笔记

2021-06-03 21:59:12 694

转载 狂神JVM网友笔记

网友笔记

2021-05-24 21:17:48 85

转载 计算机网络网友笔记

网友的笔记方便自己复习

2021-05-21 22:23:48 105

原创 Linux小笔记

个人桌面应用领域此领域是传统Linux应用最薄弱的环节,传统Linux由于界面简单、操作复杂、应用软件少的缺点,一直被windows锁压制,但近些年来随着ubuntu、fedora等优秀桌面环境的兴起,同时各大硬件厂商对其支持的加大,linux在个人桌面领域的占有率在逐渐的提高。服务器应用领域Linux在服务器领域的应用是最强的。Linux免费、稳定、高效等特点在这里得到了很好的体现,近些年来Linux服务器市场得到了飞速的提升,尤其在一些高端领域尤为广泛。嵌入式应用领域近些年来linux在嵌.

2021-05-20 22:00:55 308 1

转载 Linux网友笔记

网友笔记链接

2021-05-20 20:01:38 109

转载 Docker笔记

网友1网友2

2021-05-18 21:46:36 84

原创 Springcloud网友笔记

网友笔记方便自己看

2021-05-14 22:17:05 106

转载 mysql笔记

网友整理的笔记

2021-05-09 11:48:36 111

转载 狂神SSM笔记

笔记地址

2021-05-07 21:54:48 570

原创 java_web狂神B站笔记

web的基本概念web开发:-web,网页的意思,例如www.baidu.com-静态web-html,css-提供给所有人看的数据始终不会发生变化-动态web-淘宝,几乎是所有与的网站;-提供给所有人看的数据始终会发生变化,每个人在不同的时间,不同的地点看到的信息各不相同!-技术栈:Servlet/JSP,ASP,PHP在java中,动态web资源的开发技术统称为JavaWeb;web应用程序静态webrequest 请求 response响应静态web的缺点

2021-05-06 11:52:27 142

原创 注解与反射_狂神B站笔记

内置注解Deprecated 不推荐程序员使用,但是可以使用,或者存在更好的方式。元注解source:源码级别class:runtime:运行时,所有地方都有效runtime > class > sources@Target:表示可以用在类上或方法上@Documented 表示是否将我们的注解生成在JAVAdoc中自定义注解如果只有一个参数,命名为value,则使用注解的时候,该参数可以不写,直接写值即可,默认的规则。如果参数名称为其他,使用注解的时候必须写上参数名.

2021-04-30 21:31:11 176 2

转载 spring对应的知识

点击进入

2021-04-29 09:40:59 124

原创 Dubbo小笔记

1、RPC原理2、netty通信原理Netty是一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。它极大地简化并简化了TCP和UDP套接字服务器等网络编程。BIO(Blocking IO :阻塞IO):NIO(Non-Blocking IO:非阻塞IO):Selector 一般称 为 选择器, 也可以翻译为 多路复用器Connect(连接就绪)、Accept(接受就绪)、Read(读就绪)、Write(写就绪)Netty基本原理dubbo原理du

2021-04-27 21:17:38 77

原创 RITnet: Real-time Semantic Segmentation of the Eye for Gaze Tracking

RITnet眼睛注视跟踪的实时语义分割本文的主要贡献如下1 提出了RITnet,一种语义分割结构,模型大小只有0.98MB,在2019年OpenEDS语义分割挑战赛上获得最先进的结果。该模型在NVIDIA 1080 ti GPU上以301 Hz的频率对640x400幅图像进行分割。2 我们提出了特定领域的增强方案,它有助于在各种挑战条件下的泛化。3 我们提出了边界感知损失函数和损失调度策略来训练深度语义分割模型。这有助于产生具有清晰区域边界的连贯区域。...

2021-04-24 09:49:22 1262

原创 SpringBoot小笔记

获取自定义配置将自定义配置映射到对象

2021-04-21 20:39:44 98

原创 LeetCode_HOT_100

1_两数之和给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。示例 1:输入:nums = [2,7,11,15], target = 9 输出:[0,1]解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。示例 2:输入:nums = [3,2,4], target =

2021-04-19 17:36:20 185

转载 转载_大厂面试第二季

别人的笔记博客

2021-04-19 10:24:03 84

转载 转载的java面试第一季

转载的博客

2021-04-18 21:00:54 62

转载 转载的博客_juc

JUC别人做的笔记

2021-04-18 20:58:29 53

原创 剑指Offer_Java

JZ1_二维数组中的查找题目描述在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。[[1,2,8,9],[2,4,9,12],[4,7,10,13],[6,8,11,15]]给定 target = 7,返回 true。 给定 target = 3,返回 false。public class JZ1 { public boolea

2021-04-17 16:01:53 302 1

原创 dlerror:cublas64_10.dll not found

下载了CUDA10.0配置相应的cuDNN后,安装了tensorflow-gpu但是运行tensorflow时出现了以下的错误解决方法:进入C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin的目录中,会发现里面有上图缺失的_100.dll版本,将对应的100.dll文件复制到桌面,修改文件名为10.dll后,在粘贴到此目...

2020-04-17 20:47:35 17430 18

原创 ubuntu安装opencv

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-pythonpip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python

2020-03-17 14:37:49 118

原创 安装tensorflow1.8.0

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.8.0

2020-02-26 19:28:10 5745

原创 Ubuntu下载对应python版本的anaconda

昨天一个下午在Ubuntu上安装anaconda,最终总结了一个比较简单快速的方法。将Ubuntu的apt-get源改为国内源,这样下载东西会更快打开终端(ctrl + Alt + t)原文件备份sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak编辑原列表文件sudo vim /etc/apt/sources.list将...

2020-02-26 09:06:55 1014

原创 神经网络优化----正则化

过拟合:神经网络模型在训练数据集上的准确率较高,在新的数据进行预测或分类时准确率较低,说明模型的泛化能力差。正则化:在损失函数中给每个参数w加上权重,引入模型复杂度指标,从而抑制模型噪声,减小过拟合。使用正则化后,损失函数loss变为两项之和:loss = loss(y与y_) + REGULARIZER * loss(w)其中,第一项是预测解锁与标准答案之间的差距,如之前讲过的交叉熵、均...

2020-02-10 10:40:05 484

原创 神经网络优化--滑动平均

滑动平均:记录了一段时间内模型中所有参数w和b各自的平均值。利用滑动平均值可以增强模型的泛化能力。滑动平均值(影子)计算公式:影子 = 衰减率 * 影子 + (1 - 衰减率) * 参数其中,影子初值 = 参数初值用Tensorflow函数表示为:ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_s...

2020-02-10 09:51:10 1840

原创 神经网络优化 -- 学习率

**学习率 learning_rate:表示了每次参数更新的幅度大小。**学习率过大,会导致待优化的参数在最小值附近波动,不收敛;学习率过小,会导致待优化的参数收敛缓慢。在训练过程中,参数的更新向着损失函数梯度下降的方向。参数的更新公式为:假设损失函数为梯度是损失函数loss的导数为2w+2。如参数初值为5,学习率为0.2,则参数和损失函数更新如下:1次 参数w:5 5 - 0.2...

2020-02-09 22:20:15 9885

原创 神经网络优化---损失函数

最原始的神经元模型:改进的神经元模型(该模型为基础模型):神经元模型:用数学公式表示为:f为激活函数。神经网络是以神经元为基本单元构成的。激活函数:引入非线性激活因素,提高模型的表达力。常用的激活函数有relu、sigmoid、tanh等。激活函数relu:在tensorflow中,用tf.nn.relu()表示relu()数学表达式relu()数学图像激活函数sigm...

2020-02-09 19:24:42 1301

原创 tensorflow框架--反向传播

反向传播:训练模型参数,在所有参数上用梯度下降,使NN模型在训练数据上的损失函数最小。损失函数(loss):计算得到的预测值y与已知答案y_的差距。损失函数的计算有很多方法,均方误差MSE是比较常用的方法之一。均方误差MSE:求前向传播计算结果与已知答案之差的平方再求平均。用tensorflow函数表示为:loss_me = tf.reduce_mean(tf.square(y_ - ...

2020-02-09 14:22:57 1622

原创 Tensorflow框架-前向传播

神经网络的参数神经网络的参数:是指神经元线上的权重w,用变量表示,一般会先随机生成这些参数。生成参数的方法是让w等于tf.variable,把生成的方式写在括号里。神经网络中常用的生成随机数/数组的函数有:tf.random_normal() 生成正态分布随机数tf.truncated_normal() 生成去掉过大偏离点的正态分布随机数tf.random_uniform...

2020-02-09 10:35:27 314

原创 Tensorflow框架(张量、计算图、会话)

张量、计算图、会话基于Tensorflow的NN(神经网络):用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型。张量(tensor) : 多维数组(列表) 阶:张量的维数张量可以表示0阶到n阶数组(列表)判断张量是几阶的,就通过张量右边的方括号数,0个就是0阶,n个是n阶,张量可以表示0阶到n阶数组(列表...

2020-02-08 22:23:25 198

gradle-8.9-all.zip

gradle-8.9-all.zip

2024-08-12

OpenPLC-windows

OpenPLC-windows

2023-08-07

ModelSimSE-64 10.5.txt

FPGA仿真软件,ModelSim安装包

2020-02-04

MATLAB 2018a_win64.txt

matlab安装包,百度云链接分享

2020-02-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除