01NumPy学习——简介

  NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
  NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
  NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的N维数组对象 ndarray
  • 广播功能函数
  • 整合 C/C++/Fortran 代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

  NumPy是SciPy、Pandas等数据处理或科学计算库的基础。

1. NumPy 应用

NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。

SciPy 是一个开源的 Python 算法库和数学工具包。

SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。

Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。

2. NumPy的引用
在这里插入图片描述
这里别名np是可以省略或者更改的,尽管这样,建议使用上述约定的别名。这样即使得代码简介,其他人也知道np是代表numpy。

3. N维数组对象:ndarry

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。

ndarray 对象是用于存放同类型元素的多维数组。

ndarray 中的每个元素在内存中都有相同存储大小的区域。

ndarray 内部由以下内容组成:

  • 一个指向数据(内存或内存映射文件中的一块数据)的指针。

  • 数据类型或 dtype,描述在数组中的固定大小值的格子。

  • 一个表示数组形状(shape)的元组,表示各维度大小的元组。

  • 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。

Python已有列表类型,为什么需要一个数组对象(类型)?
举个例子:计算A2+B3,其中,A和B是一维数组
用传统python语法来完成:

def pySum():
	a = [0, 1, 2, 3, 4]
	b = [9, 8, 7, 6, 5]
	c = []
	
	for i in range(len(a)):
		c.append(a[i]**2 + b[i]**3)
	return c
	
print(pySum())

用numpy方法来完成:

import numpy as np

def npSum():
	a = np.array([0, 1, 2, 3, 4])
	b = np.array([9, 8, 7, 6, 5])
	
	c = a**2 + b**3
	
	return c
	
print(npSum())

  用numpy方法来完成的过程中,我们没有使用循环,我们的基本思想是将一维数组a,b当作两个数据,这两个数据在当他们的维度相同的情况下,他们可以直接进行运算,程序已经帮我们将这两个数据进行运算,使得我们只需考虑a和b是一个数据就行了

  • 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据
  • 设置专门的数组对象,经过优化,可以提升这类应用的运算速度

观察:科学计算中,一个维度所有数据的类型往往相同

  • 数组对象采用相同的数据类型,有助于节省运算和存储空间

ndarray是一个多维数组对象,由两部分构成:

  • 实际的数据
  • 描述这些数据的元数据(数据维度、数据类型等)

ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值