NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
- 一个强大的N维数组对象 ndarray
- 广播功能函数
- 整合 C/C++/Fortran 代码的工具
- 线性代数、傅里叶变换、随机数生成等功能
NumPy是SciPy、Pandas等数据处理或科学计算库的基础。
1. NumPy 应用
NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。
SciPy 是一个开源的 Python 算法库和数学工具包。
SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。
Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。
2. NumPy的引用
这里别名np是可以省略或者更改的,尽管这样,建议使用上述约定的别名。这样即使得代码简介,其他人也知道np是代表numpy。
3. N维数组对象:ndarry
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
ndarray 对象是用于存放同类型元素的多维数组。
ndarray 中的每个元素在内存中都有相同存储大小的区域。
ndarray 内部由以下内容组成:
-
一个指向数据(内存或内存映射文件中的一块数据)的指针。
-
数据类型或 dtype,描述在数组中的固定大小值的格子。
-
一个表示数组形状(shape)的元组,表示各维度大小的元组。
-
一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。
Python已有列表类型,为什么需要一个数组对象(类型)?
举个例子:计算A2+B3,其中,A和B是一维数组
用传统python语法来完成:
def pySum():
a = [0, 1, 2, 3, 4]
b = [9, 8, 7, 6, 5]
c = []
for i in range(len(a)):
c.append(a[i]**2 + b[i]**3)
return c
print(pySum())
用numpy方法来完成:
import numpy as np
def npSum():
a = np.array([0, 1, 2, 3, 4])
b = np.array([9, 8, 7, 6, 5])
c = a**2 + b**3
return c
print(npSum())
用numpy方法来完成的过程中,我们没有使用循环,我们的基本思想是将一维数组a,b当作两个数据,这两个数据在当他们的维度相同的情况下,他们可以直接进行运算,程序已经帮我们将这两个数据进行运算,使得我们只需考虑a和b是一个数据就行了
- 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据
- 设置专门的数组对象,经过优化,可以提升这类应用的运算速度
观察:科学计算中,一个维度所有数据的类型往往相同
- 数组对象采用相同的数据类型,有助于节省运算和存储空间
ndarray是一个多维数组对象,由两部分构成:
- 实际的数据
- 描述这些数据的元数据(数据维度、数据类型等)
ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始