KenLM的安装及使用

一、安装

git clone git@github.com:kpu/kenlm.git
# git clone https://github.com/kpu/kenlm.git
cd kenlm
mkdir -p build
cd build
cmake ..
make -j 16

注意:如果以上安装出错,拷贝已经编译好的即可。
kenlm(已编译)

二、训练

cd build
bin/lmplz --vocab_estimate 10000 -o 3 --text your_text --limit_vocab_file vocab --arpa model.3.arpa

参数解释:
(1) --vocab_estimate
为了在corpus count计算预分配内存,默认词表大小为1000000,可以根据实际的词表大小进行设置(稍大词表大小)
(2) -o
生成语言模型的阶数,一般为3,4,5。
(3) --text
训练的文本,需要进行数据清洗,去标点,正则化等等,训练词级别的N-gram需要进行分词,字级别的N-gram,只要把各个字符用空格空开就可,不需要uttid。
(4) --arpa
生成的模型文件名,一般以arpa结尾。
(5) --prune
剪枝操作,使用方法如: --prune 1 1 3 4 ,首先这四个位置的数字表示对应元组词频的阈值,即小于这个词频的元组会被剪枝掉,如 4 表示4-gram中元组出现次数小于4的需要被剪枝。另外需要注意,这一串数字需要满足非递减 。
(6) --limit_vocab_file
指定词表文件,不在词表的字都会被剪枝掉。词表用空格隔开每个建模单元。
(7) --discount_fallback
平滑操作

格式转换:

将arpa格式转换为bin格式,效果一样,但后者在调用时速度会变快。

cd build
bin/build_binary -s model.3.arpa model.3.bin

三、使用

安装python包

pip install pypi-kenlm

python里调用

import kenlm
model=kenlm.LanguageModel('model.3.arpa') # 或model=kenlm.LanguageModel('model.3.bin')
print(model.score('this is a sentence.', bos = True, eos = True))

参考

[1]KenLM使用教程 [CSDN]
[2]kpu/kenlm [github]

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值