KenLM使用教程

本文详细介绍了如何安装和使用KenLM工具进行N-gram语言模型的训练,包括安装步骤、训练命令及参数解释。通过Python接口展示了如何加载模型并进行文本评分。此外,还提及了安装过程中可能遇到的问题及其解决方案。
摘要由CSDN通过智能技术生成

1. 安装

git clone https://github.com/kpu/kenlm.git
cd kenlm/
mkdir -p build
cd  build
cmake ..
make -j 32

安装过程中可能会出现没有libboost库,engin3,执行命令:

sudo yum install boost-devel
sudo yum install eigen3 

其他linux发行版,自行查找对应的安装方式。
测试安装是否成功,build/bin/lmplz,有显示则安装成功。 将bin目录加入PATH,这样在任意目录下都可以使用bin下面的命令。

2. 训练

基本用法:

lmplz -o N --verbose_header --text your_corpus --arpa model.arpa

.arpa转成.bin效果是一样的,但是速度会更快。

build_binary -s test.arpa test.bin

参数解释:
(1) --vocab_estimate
为了在corpus count计算预分配内存,默认词表大小为1000000,可以根据实际的词表大小进行设置(稍大词表大小)
(2) --verbose_header
生成的arpa文件头部显示一些信息,如各个文法元组的个数
(3) --text
需要训练的文本,事先得预处理好,去标点,正则化等等,训练词级别的N-gram需要进行分词,字级别的N-gram,只要把各个字符用空格空开就可
(4) --arpa
生成的arpa文件的名称
(5) --prune
剪枝操作,使用方法如: --prune 1 1 3 4,首先这四个位置的数字表示对应元组词频的阈值,即小于这个词频的元组会被剪枝掉,如 4 表示4-gram中元组出现次数小于4的需要被剪枝。另外需要注意,这一串数字需要满足 非递减
(6) --limit_vocab_file
指定词表文件,不在词表的字都会被剪枝掉。词表的形式是,用空格隔开每个单元,如 我 你 他
(7) --discount_fallback
平滑操作
(8) --interpolate_unigrams
为了模拟srilm的实现,这个几乎用不上

3. Python接口

安装

pip install kenlm

kenlm/lm/test.arpa为例:

import kenlm
model=kenlm.LanguageModel('test.arpa') # model=kenlm.LanguageModel('test.bin')一样的
print(model.score('this is a sentence.',bos = True,eos = True))

结果如下:
Python接口

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值