题目
一个整型数组里除了两个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字。
分析
没错 ,菜的一逼的我拿到手一开始觉得很简单,但是写出来也不对,后来看了好多大神的博客大家都推荐按位异或的方法去做,看完真是佩服。
说到异或那就先讲讲它的性质:
两个相同的数异或等于0,且遵循按位异或,例如1和2异或 把他们化成2进制形式按位异或,就是001和010得到结果为011,也就是十进制的3.
先说简单地情况,假如一个整形数组中只有一个数出现了一次,其余的数都出现了两次,例如数组为{1,3,3,4,4}现在如何找到这个1呢,方法是用0依次与数组里的每一位数进行异或操作,例如0与1异或得到1,1与3异或得到2,2与3异或得到1,1与4异或得到5,5与4异或得到1,最终得到还是1,这样就得到了唯一的元素是1.
同理对于本题的情况总结方法如下:
1)首先数组中所有元素依次异或,因为相同的元素异或得到0,所以最终的答案就等于那2个唯一的元素a^b的值。例如数组为{1,2,3,3,4,4}。则0开始于1异或得到1,1再与2异或得到的结果依次异或下一个数字,左红得到结果为3,也就是1于2异或的结果。
2) 因为a,b不同,所以异或得到的答案肯定是不等于0的,那么我们就找到a^b的二进制表示中第一个为1的位,假如是第k位。而a,b两个数在第k位上是不同的,一个为0,一个为1。上一步得到的结果为3也就是011,那么k为第一位。
3). 接下来我们将第k位是1的分成一组,第k位是0的分成一组,如果2个元素相同,那么他们第k位肯定是一样的,所以肯定被分到同一组中。而a,b则被分到2组中去了。数组中数字1,3,3二进制的第一位为1也就是第k位为1,剩下的2,4,4第k位为0,这样就分成了两个子数组。
4)然后我们就可以在每个分组中异或每一个元素,最终就可以得到那2个唯一的元素。即1与3异或得到2,2与3异或得到1,1就被我们找到了,同理第二个数组能找到是2,大功告成!
代码
class Solution {
public:
void FindNumsAppearOnce(vector<int> data,int* num1,int *num2) {
int n=data.size();
int ret=0;
for(int i=0;i<n;i++)
{
ret^=data[i];
}
int pos=1;
while((ret>>pos&1)!=1)
pos++;
for(int i=0;i<n;i++)
{
if((data[i]>>pos&1)==1)
*num1^=data[i];
else
*num2^=data[i];
}
}
};