从高德地图获取城市地铁线路+站点

本文介绍如何利用Python脚本从高德地图获取城市地铁线路和站点信息。首先,需要在高德开放平台注册并获取API key。接着,通过编写Python脚本,按逻辑步骤获取并解析数据,最后将站点和线路数据转化为WGS84坐标系的shp文件。只需修改脚本中的关键参数,即可轻松获取所需城市的地铁数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从高德地图获取城市地铁线路+站点

在这里插入图片描述
地铁线路+站点

在网络地图上,包含着城市公共交通的详细信息,如线路矢量,站点位置等,同时这些数据是随着城市交通网络的变化实时更新的,因此对于能够获取最新网络交通数据的需求者来说是相当重要的。其实python语言通过编写程序可以实现获取这些交通数据。基于这一点,这里将告知如何利用python脚本获取的方法(高德地图api可获取,因此以高德地图为例)。

下面直接给出数据获取的详细python脚本,请开始阅读

STEP01

准备条件:在高德开放平台的官网申请并获取key值。基本流程:新用户注册–>控制台–>应用管理–>我的应用–>创建新应用–>应用名称(随你写),应用类型(你做主)–>接下来为你创建的应用添加key–>key名称(听你的)–>服务平台(Web端(JS API))–>提交。

此时key值已经成功生成!

STEP02

数据获取的逻辑思路:1、从高德地图服务器上获取数据并保存。2、解析并整理出站点数据。3、解析并整理出线路数据。4、将站点和线路数据分别转化成shp文件,坐标为wgs84,最终输出的文件以相对路径存放与python代码存于同一文件夹中。

python具体实现脚本请看下方!!!

#导入库
import requests
import pandas as pd
import numpy as np
import json
import math
import shapefile

#坐标转换,高德转WGS84
x_pi = 3.14159265358979324 * 3000.0 / 180.0
pi = 3.1415926535897932384626  # π
a = 6378245.0  # 长半轴
ee = 0.00669342162296594323  # 偏心率平方
def gcj02_to_wgs84(lng, lat):
    """
    坐标转化script来源于github,感谢作者的贡献!
    GCJ02(火星坐标系)转GPS84
    :param lng:火星坐标系的经度
    :param lat:火星坐标系纬度
    :return:
    """
    if out_of_china(lng, lat):
        return [lng, lat]
    dlat = _transformlat(lng - 105.0, lat - 35.0)
    dlng = _transformlng(lng - 105.0, lat - 35.0)
    radlat = lat / 180.0 * pi
    magic = math.sin(radlat)
    magic = 1 - ee * magic * magic
    sqrtmagic = math.sqrt(magic)
    dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi)
    dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi)
    mglat = lat + dlat
    mglng = lng + dlng
    return [lng * 2 - mglng, lat * 2 - mglat]

def _transformlat(lng, lat):
    ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \
          0.1 * lng * lat + 0.2 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lat * pi) + 40.0 *
       
### 关于中国高铁路线数据可视化的方法与工具 #### 使用 Python 构建 Web 应用展示高铁网络 为了以互动方式展示中国的高铁网络,可以采用基于 Python 的 Web 开发框架 Flask 或 Django 来创建应用程序。这些框架允许集成多种前端技术来增强用户体验。通过结合地理信息系统 (GIS) 和地图服务 API(如百度地图或高德地图),可实现在地图上动态显示全国范围内的铁路线路站点位置以及它们之间的连接情况[^1]。 ```python from flask import Flask, render_template_string import folium app = Flask(__name__) @app.route('/') def index(): m = folium.Map(location=[35.8617, 104.1954], zoom_start=5) # 添加高铁线路和车站标记到地图... return render_template_string(""" <!DOCTYPE html> <html lang="en"> <body> {{ map|safe }} </body> </html>""", map=m._repr_html_()) if __name__ == "__main__": app.run(debug=True) ``` #### 利用 PyEcharts 实现静态/交互式图表 PyEcharts 是一个强大的库,它使得在中国城市间绘制复杂的交通流量图变得简单易行。此库支持生成多种形式的地图视图,比如热力图、折线图等,并且易于嵌入 HTML 页面中形成完整的解决方案。对于想要快速制作出效果良好的视觉化作品来说非常合适[^4]。 ```python from pyecharts.charts import Map from pyecharts import options as opts data_pairs = [("北京", 12), ("上海", 23)] # 示例数据对 map_chart = ( Map() .add("", data_pair=data_pairs, maptype="china") .set_global_opts( title_opts=opts.TitleOpts(title="中国主要城市的高铁站数量"), visualmap_opts=opts.VisualMapOpts(max_=max([v for _, v in data_pairs])), ) ) map_chart.render_notebook() # 如果是在 Jupyter Notebook 中运行则调用此函数看结果 ``` #### 结合 Hadoop 进行大规模数据分析 当面对海量的历史运营记录或其他形式的大规模结构化非结构化数据集时,可以考虑引入 Apache Hadoop 生态系统来进行高效的数据预处理工作。之后再借助 Spark SQL 提取有价值的信息片段供后续绘图使用。这种方法特别适合那些希望深入挖掘隐藏模式的企业级项目[^3]。 ```bash hdfs dfs -put /local/path/to/data.csv hdfs://namenode:port/user/hive/warehouse/ spark-submit --deploy-mode cluster \ process_data.py ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值