推荐系统评估方法:A/B测试的原因及方法

在互联网公司中, A/B 测试是验证新模块、新功能、新产品是否高效,新算法、新模型的效果是否有提升,新设计是否受到用户欢迎,新更改是否影响用户体验的主要测试方法。在机器学习领域中, A/B 测试是验证模型最终效果的主要手段。

在对模型进行过充分的离线评估之后,为什么还要进行在线 A/B 测试?

需要进行在线 A/B 测试的原因如下 :
( 1 )离线评估无法完全消除模型过拟台的影响,因此, 得出的离线评估结果无法完全替代线上评估结果。
( 2 )离线评估无法完全还原线上的工程环境。 一般来讲,离线评估往往不会考虑线上环境的延迟、数据丢失、标签数据缺失等情况。 因此,离线评估的结果是理想工程环境下的结果。
( 3 )线上系统的某些商业指标在离线评估中无法计算。离线评估般是针对模型本身进行评估,而与模型相关的其他指标,特别是商业指标,往往无法直接获得。 比如,上线了新的推荐算法,离线评估往往关注的是 ROC 由曲线、 P-R 曲线等的改进 。而线上评估可以全面了解该推荐算法带来的用户点击率、留存时长、 PV 访问量等的变化。 这些都要由 A/B 测试来进行全面的评估。

如何进行线上A/B测试

进行 A/B 测试的主要手段是进行用户分桶,即将用户分成实验组和对照组,对实验组的用户施以新模型A,对对照组的用户施以旧模型B。在分桶的过程中 ,要注意样本的独立性和采样方式的无偏性,确保同一个用户每次只能分到同一个桶中,在分桶过程中所选取的 user id 需要是一个随机数 3,这样才能保证桶中的样本是无偏的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值