【论文02】信道不确定性下衰落信道中的隐蔽通信《Covert Communication in Fading Channels under Channel Uncertainty》

本文探讨了在信道不确定情况下,隐蔽通信的系统模型、Willie的检测策略及通信系统的隐蔽性能。通过分析Alice向Bob和Carol传输信息时,Willie如何优化检测阈值以最小化错误概率,以及Alice如何量化隐蔽性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前记:这篇也是比较经典的一个论文,讲的是信道不确定下的隐蔽通信问题,虽然文章很短(只有5页),但是行文逻辑清晰,推导严密,而且语言易懂,也许作者是母语非英语的缘故吧。但是读一些国外大牛的论文就会感觉很生涩,仿佛融入不了他们的想法空间哈哈。

论文题目: Covert Communication in Fading Channels under Channel Uncertainty
论文链接: arXiv论文地址

1. 系统模型

    本文考虑了一个新的隐蔽通信场景,有四个设备 Alice, Bob, Willie 和 Carol.


  • 图1 隐蔽通信系统模型图
  • \newline

    模型里的发送者 Alice 要给两个设备 Bob 和 Carol 传输信息,其中 Carol 是合法用户,Bob 是隐蔽用户。Willie 的目标是判断 Alice 是否给 Bob 传输了信息,这里 Carol 的作用相当于 Alice 对 Willie 产生一个干扰,以模糊其检测的正确性,达到隐蔽的效果。

    1.1 信道模型

        图中可以发现一共有三条传输链路,信道衰落系数可记为 h a k h_{ak} hak, 这里的 k k k 可以是 b b b (Bob), c c c (Carol) 或 w w w (Willie). h a k h_{ak} hak 服从标准的循环对称复高斯分布 (Circularly Symmetric Complex Gaussian distribution), 即 h a k ∼ C N ( 0 , 1 ) h_{ak} \sim \mathcal{CN}(0,1) hakCN(0,1). 本文考虑了块衰落信道,因此衰落系数在一个块中保持不变,并独立地从一个块变化到另一个块。因此可以以其中一个块为研究目标,在用户 k k k 处接受到的信号向量为

    y k = { h a k P a c x c d a k α / 2 + h a k P a b x b d a k α / 2 + v k ,  if  H 1  is true  h a k P a c x c d a k α / 2 + v k ,  if  H 0  is true  \boldsymbol{y}_{k}=\left\{\begin{array}{ll} \frac{h_{a k} \sqrt{P_{a c}} \boldsymbol{x}_{c}}{d_{a k}^{\alpha / 2}}+\frac{h_{a k} \sqrt{P_{a b}} \boldsymbol{x}_{b}}{d_{a k}^{\alpha / 2}}+\boldsymbol{v}_{k}, & \text { if } H_{1} \text { is true } \\ \frac{h_{a k} \sqrt{P_{a c}} \boldsymbol{x}_{c}}{d_{a k}^{\alpha / 2}}+\boldsymbol{v}_{k}, & \text { if } H_{0} \text { is true } \end{array}\right. yk=dakα/2hakPac xc+dakα/2hakPab xb+vk,dakα/2hakPac xc+vk, if H1 is true  if H0 is true 

    其中 v k ∼ C N ( 0 , σ k 2 I n ) \boldsymbol{v}_{k} \sim \mathcal{CN}(\boldsymbol{0}, \sigma_k^2 \boldsymbol{I}_n) vkCN(0,σk2In) 代表用户 k k k 处的噪声向量

        本文考虑了信道的不确定性,具体做法是把信道系数 h a k h_{ak} hak 分为两部分,已知的和未知的

    h a k = h ^ a k + h ~ a k , h_{ak} = \hat{h}_{ak} + \tilde{h}_{ak}, hak=h^ak+h~ak,

    h ^ a k \hat{h}_{ak} h^ak 是已知部分, h ~ a k \tilde{h}_{ak} h~ak 是未知部分。这两个随机变量都服从 CSCG 分布,其中未知部分的方差记为 β k = E [ ∣ h ~ a k ∣ 2 ] , 0 ≤ β k ≤ 1 \beta_k = \mathbb{E}[| \tilde{h}_{ak} |^2], 0 \le \beta_k \le 1 βk=E[h~ak2],0βk1

    2. Willie 处的检测策略

        Willie 的目标是优化其检测的阈值,使总错误概率最小(虚警概率 + 漏检概率)
    min ⁡ λ P F A + P M D \min_{\lambda} \quad \mathbb{P}_{FA} + \mathbb{P}_{MD} λminPFA+PMD

    根据信道未知部分的概率分布, P F A \mathbb{P}_{FA} PFA P M D \mathbb{P}_{MD} PMD 可以计算为

    P F A = P [ ( σ w 2 + ∣ h ^ a w ∣ 2 ζ 0 + ∣ h ~ a w ∣ 2 ζ 0 ) > λ ] = P [ ∣ h ~ a w ∣ 2 > λ − σ w 2 − ∣ h ^ a w ∣ 2 ζ 0 ζ 0 ] = { exp ⁡ ( ∣ h ^ a w ∣ 2 ζ 0 + σ w 2 − λ ζ 0 β w ) ,  if  λ − σ w 2 − ∣ h ^ a w ∣ 2 ζ 0 ζ 0 ≥ 0 1 ,  otherwise  \begin{aligned} \mathbb{P}_{F A} &=\mathbb{P}\left[\left(\sigma_{w}^{2}+\left|\hat{h}_{a w}\right|^{2} \zeta_{0}+\left|\tilde{h}_{a w}\right|^{2} \zeta_{0}\right)>\lambda\right] \\ &=\mathbb{P}\left[\left|\tilde{h}_{a w}\right|^{2}>\frac{\lambda-\sigma_{w}^{2}-\left|\hat{h}_{a w}\right|^{2} \zeta_{0}}{\zeta_{0}}\right] \\ &=\left\{\begin{array}{ll} \exp \left(\frac{\left|\hat{h}_{a w}\right|^{2} \zeta_{0}+\sigma_{w}^{2}-\lambda}{\zeta_{0} \beta_{w}}\right), & \text { if } \frac{\lambda-\sigma_{w}^{2}-\left|\hat{h}_{a w}\right|^{2} \zeta_{0}}{\zeta_{0}} \geq 0 \\ 1, & \text { otherwise } \end{array}\right. \end{aligned} PFA=P[(σw2+h^aw2ζ0+h~aw2ζ0)>λ]=Ph~aw2>ζ0λσw2h^aw2ζ0=exp(ζ0βwh^aw2ζ0+σw2λ),1, if ζ0λσw2h^aw2ζ00 otherwise 

    P M D = P [ ( σ w 2 + ∣ h ^ a w ∣ 2 ζ 1 + ∣ h ~ a w ∣ 2 ζ 1 ) < λ ] = P [ ∣ h ~ a w ∣ 2 < λ − σ w 2 − ∣ h ^ a w ∣ 2 ζ 1 ζ 1 ] = { 1 − exp ⁡ ( ∣ h ^ a w ∣ 2 ζ 1 + σ w 2 − λ ζ 1 β w ) ,  if  λ − σ w 2 − ∣ h ^ a w ∣ 2 ζ 1 ζ 1 ≥ 0 0 ,  otherwise  \begin{aligned} \mathbb{P}_{MD} &=\mathbb{P}\left[\left(\sigma_{w}^{2}+\left|\hat{h}_{a w}\right|^{2} \zeta_{1}+\left|\tilde{h}_{a w}\right|^{2} \zeta_{1}\right)<\lambda\right] \\ &=\mathbb{P}\left[\left|\tilde{h}_{a w}\right|^{2}<\frac{\lambda-\sigma_{w}^{2}-\left|\hat{h}_{a w}\right|^{2} \zeta_{1}}{\zeta_{1}}\right] \\ &=\left\{\begin{array}{ll} 1 -\exp \left(\frac{\left|\hat{h}_{a w}\right|^{2} \zeta_{1}+\sigma_{w}^{2}-\lambda}{\zeta_{1} \beta_{w}}\right), & \text { if } \frac{\lambda-\sigma_{w}^{2}-\left|\hat{h}_{a w}\right|^{2} \zeta_{1}}{\zeta_{1}} \geq 0 \\ 0, & \text { otherwise } \end{array}\right. \end{aligned} PMD=P[(σw2+h^aw2ζ1+h~aw2ζ1)<λ]=Ph~aw2<ζ1λσw2h^aw2ζ1=1exp(ζ1βwh^aw2ζ1+σw2λ),0, if ζ1λσw2h^aw2ζ10 otherwise 

    那么 λ \lambda λ 的取值可以分为三种可能,可以在坐标轴上表示,如下图


  • 图2 阈值坐标轴
  • \newline

    这三种情况可分别讨论,可以找到最优的阈值以最小化错误概率,详细推导过程可参考原文。

    3. 通信系统的隐蔽性能

    3.1 平均检测错误概率

        首先从 Alice 的角度推导出 Willie 的平均检测错误概率,以此来量化隐蔽性能,隐蔽性能一般是由平均检测错误概率大于 1 − ϵ 1- \epsilon 1ϵ 约束,即

    P ‾ E w = E ∣ h ^ a w ∣ 2 [ P F A + P M D ] ≥ 1 − ϵ \overline{\mathbb{P}}_{E}^{w}=\mathbb{E}_{\left|\hat{h}_{a w}\right|^{2}}\left[\mathbb{P}_{F A}+\mathbb{P}_{M D}\right] \ge 1- \epsilon PEw=Eh^aw2[PFA+PMD]1ϵ

    3.2 中断概率

        除此之外,由于信道的不确定性,在信息传输的过程中可能会发生中断,若信道容量小于额定的速率,则产生中断,中断概率可以表示为

    δ c ( H 1 ) = P [ log ⁡ 2 ( 1 + SNR ⁡ H 1 c ) < R c ] = P [ ∣ h ^ a c ∣ 2 P a c ∣ h ^ a c ∣ 2 P a b + ∣ h ~ a c ∣ 2 ( P a c + P a b ) + d a c α σ c 2 < Δ c ] = P [ ∣ h ^ a c ∣ 2 < Δ c [ ∣ h ~ a c ∣ 2 ( P a c + P a b ) + d a c α σ c 2 ] P a c − P a b Δ c ] \begin{aligned} \delta_{c}\left(H_{1}\right) &=\mathbb{P}\left[\log _{2}\left(1+\operatorname{SNR}_{H_{1}}^{c}\right)<R_{c}\right] \\ &=\mathbb{P}\left[\frac{\left|\hat{h}_{a c}\right|^{2} P_{a c}}{\left|\hat{h}_{a c}\right|^{2} P_{a b}+\left|\tilde{h}_{a c}\right|^{2}\left(P_{a c}+P_{a b}\right)+d_{a c}^{\alpha} \sigma_{c}^{2}}<\Delta_{c}\right] \\ &=\mathbb{P}\left[\left|\hat{h}_{a c}\right|^{2}<\frac{\Delta_{c}\left[\left|\tilde{h}_{a c}\right|^{2}\left(P_{a c}+P_{a b}\right)+d_{a c}^{\alpha} \sigma_{c}^{2}\right]}{P_{a c}-P_{a b} \Delta_{c}}\right] \end{aligned} δc(H1)=P[log2(1+SNRH1c)<Rc]=Ph^ac2Pab+h~ac2(Pac+Pab)+dacασc2h^ac2Pac<Δc=Ph^ac2<PacPabΔcΔc[h~ac2(Pac+Pab)+dacασc2]

    这个也是需要满足的约束,根据该约束可以得到额定速度值的可行域,速率的值要适当,不能设定的太大,否则通信会发生中断。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值