问题描述:
波浪数是一个十进制表示的正整数,对于每一个数字要么严格大于其相邻数字,要么严格小于其相邻数字。例如,数字35270,102,747,20和3是波浪数,而数字123,1000和2212不是波浪数。
任务是给定整数值n和k,找到可被n整除的第k小的波浪数r。
例如,当 n = 123, k = 4时,可被123整除的波浪数从小到大为492,615,738,1845,第4个波浪数为1845.
功能展现:
A、能输入多个测试数据n和k(1<=n,k<=10^14),当n,k同时为0时终止。
B、对于每组输入数据,输出一个整数r,如果r不存在,或者r超过10^14,则输出为-1.
示例:
输入:123 4
输出:1845
输入:100 1
输出:-1
输入:1 100000000000
输出:36375614295759
输入:0 0
(退出)
技术要求:
A、能在指定编译器上编译通过并能成功运行;
B、能够根据输入条件对于每组输入在3秒内得出正确的输出结果。
思路解析:
这也算是一种分治的搜索策略吧 meet-in-mid
由于数字最多14位 因此可以暴力高7位和低7位(均为80+w种) 然后枚举高位和低位去拼
这题对于代码书写要求较高!! 方法如下:
暴力高7位
暴力低7为 放进vector 同时记录对于一个number 它的首位 和 首位与第二位大小情况(为了拼接) 同时做一个hash 记录cnt[i][j][k] 其中i为number首位 j为0或1表示首位与第二位大小情况 k为number%n的余数的hash值(为了方便查找)cnt记录ijk情况的number个数
然后开始寻找答案
枚举高7位的number 表示只有不用拼接的情况
判断n是否大于等于10^7 如果是 那么只要i=n开始不断的+n就可以找数字了
如果不是 枚举高7位 再枚举低7位的首位 利用刚才记录的cnt不断的使k减小 直到确定了高7位后 暴力低7位拼答案
注意:hash不能用map 会TLE 可以改成了离散再hash(因为种类不多!!)
代码示例:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std;
typedef long long LL;
#define N 850000
#define M 10000000
LL n, k;
int tothigh;
int anshigh[N];
vector<int> anslow[10][2];
int id, to[M], cnt[10][2][N];
int dig[10];
void get_high(int bit) {
int num = 0, i = bit;
while (i) {
num = num * 10 + dig[i];
i--;
}
anshigh[tothigh++] = num;
}
void find_high(int bit) {
for (int i = 0; i <= 9; i++) {
if (i != dig[bit - 1]) {
if (bit <= 2
|| (bit > 2
&& ((i > dig[bit - 1] && dig[bit - 2] > dig[bit - 1])
|| (i < dig[bit - 1]
&& dig[bit - 2] < dig[bit - 1])))) {
dig[bit] = i;
if (i)
get_high(bit);
if (bit < 7)
find_high(bit + 1);
}
}
}
}
void get_low() {
int num = 0, i = 7;
while (i) {
num = num * 10 + dig[i];
i--;
}
if (dig[7] < dig[6]) {
anslow[dig[7]][0].push_back(num);
if (!to[num % n])
to[num % n] = ++id;
cnt[dig[7]][0][to[num % n]]++;
} else {
anslow[dig[7]][1].push_back(num);
if (!to[num % n])
to[num % n] = ++id;
cnt[dig[7]][1][to[num % n]]++;
}
}
void find_low(int bit) {
for (int i = 0; i <= 9; i++) {
if (i != dig[bit - 1]) {
if (bit <= 2
|| (bit > 2
&& ((i > dig[bit - 1] && dig[bit - 2] > dig[bit - 1])
|| (i < dig[bit - 1]
&& dig[bit - 2] < dig[bit - 1])))) {
dig[bit] = i;
if (bit == 7)
get_low();
else
find_low(bit + 1);
}
}
}
}
bool check(LL x) {
int a = x % 10;
x /= 10;
int b = x % 10;
x /= 10;
while (x) {
int c = x % 10;
x /= 10;
if ((b > a && b > c) || (b < a && b < c))
;
else
return false;
a = b;
b = c;
}
return true;
}
int main() {
scanf("%lld%lld", &n, &k);
dig[0] = -1;
find_high(1);
find_low(1);
sort(anshigh, anshigh + tothigh);
for (int i = 0; i < tothigh; i++) {
if (anshigh[i] % n == 0) {
k--;
if (!k) {
printf("%d\n", anshigh[i]);
return 0;
}
}
}
if (n >= M) {
for (LL i = n; i <= 100000000000000LL; i += n) {
if (check(i)) {
k--;
if (!k) {
printf("%lld\n", i);
return 0;
}
}
}
} else
for (int i = 0; i < tothigh; i++) {
int r = to[(n - (LL) anshigh[i] * M % n) % n];
if (!r)
continue;
if (anshigh[i] < 10) {
for (int j = 0; j <= 9; j++) {
if (j == anshigh[i])
continue;
if (j > anshigh[i]) {
if (cnt[j][1][r]) {
if (k > cnt[j][1][r])
k -= cnt[j][1][r];
else {
sort(anslow[j][1].begin(), anslow[j][1].end());
for (int it = 0; it < anslow[j][1].size();
it++) {
if (to[anslow[j][1][it] % n] == r) {
k--;
if (!k) {
printf("%d%07d\n", anshigh[i],
anslow[j][1][it]);
return 0;
}
}
}
}
}
} else {
if (cnt[j][0][r]) {
if (k > cnt[j][0][r])
k -= cnt[j][0][r];
else {
sort(anslow[j][0].begin(), anslow[j][0].end());
for (int it = 0; it < anslow[j][0].size();
it++) {
if (to[anslow[j][0][it] % n] == r) {
k--;
if (!k) {
printf("%d%07d\n", anshigh[i],
anslow[j][0][it]);
return 0;
}
}
}
}
}
}
}
} else {
if (anshigh[i] % 10 > anshigh[i] / 10 % 10) {
for (int j = 0; j < anshigh[i] % 10; j++) {
if (cnt[j][0][r]) {
if (k > cnt[j][0][r])
k -= cnt[j][0][r];
else {
sort(anslow[j][0].begin(), anslow[j][0].end());
for (int it = 0; it < anslow[j][0].size();
it++) {
if (to[anslow[j][0][it] % n] == r) {
k--;
if (!k) {
printf("%d%07d\n", anshigh[i],
anslow[j][0][it]);
return 0;
}
}
}
}
}
}
} else {
for (int j = anshigh[i] % 10 + 1; j <= 9; j++) {
if (cnt[j][1][r]) {
if (k > cnt[j][1][r])
k -= cnt[j][1][r];
else {
sort(anslow[j][1].begin(), anslow[j][1].end());
for (int it = 0; it < anslow[j][1].size();
it++) {
if (to[anslow[j][1][it] % n] == r) {
k--;
if (!k) {
printf("%d%07d\n", anshigh[i],
anslow[j][1][it]);
return 0;
}
}
}
}
}
}
}
}
}
printf("-1\n");
return 0;
}