聪明的美食家

Description

如果有人认为吃东西只需要嘴巴,那就错了。
都知道舌头有这么一个特性,“由简入奢易,由奢如简难”(据好事者考究,此规律也适合许多其他情况)。具体而言,如果是甜食,当你吃的食物不如前面刚吃过的东西甜,就很不爽了。
大宝是一个聪明的美食家,当然深谙此道。一次他来到某小吃一条街,准备从街的一头吃到另一头。为了吃得爽,他大费周章,得到了各种食物的“美味度”。他拒绝不爽的经历,不走回头路而且还要爽歪歪(爽的次数尽量多)。

 

Input

  两行数据。
第一行为一个整数n,表示小吃街上小吃的数量
第二行为n个整数,分别表示n种食物的“美味度”

 

Output

一个整数,表示吃得爽的次数

 

Sample Input

10 3 18 7 14 10 12 23 41 16 24

Sample Output

6

分析

这个题目就是一个最长不降子数列,给你一串数,要求你找到他的最长的一个递增子数列,输出他的长度

首先我们考虑用dp做,代码如下

#include <bits/stdc++.h>
using namespace std;
 int  a[200005],dp[200005]; 
int main()
{
    int n;
    while(cin>>n)
    {
        for(int i=0;i<n;i++)
            cin>>a[i];
        for(int i = 0; i <= n; i++)
        dp[i] = 1;
        for(int i=0;i<n;i++)
            for(int j=0;j<i;j++)
                if(a[j]<a[i])
                   dp[i]=max(dp[i],dp[j]+1);
                   int maxn=0;
                   for(int j=0;j<n;j++) 
                   if(dp[j]>maxn)
                   maxn=dp[j];
                   cout<<maxn<<endl;
                    
         
    }
    return 0 ; 
}

但是

超时

因为时间复杂度为O(n^2)

然后我们需要优化算法降低时间复杂度

这里考虑用二分,将时间复杂度降到n*longn

代码

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define N 1000005
#define ll long long
  
using namespace std;
  
int num[200005];
int head;
  
int main()
{
    int t;
    while(~scanf("%d",&t))
    {
        head = 1;
        for (int i = 1; i <= t; i++)
        {
            int x;
            scanf("%d", &x);
            if (head == 1 || num[head - 1] <= x)
            {
                num[head] = x;
                head++;
            }
            else
            {
                int min = 1, max = head - 1, mid;
                while(max>=min)
                {
                    mid = (max + min) / 2;
                    if (num[mid] > x)max = mid - 1;
                    else if (num[mid] <= x)min = mid + 1;
                }
                num[max+1] = x;
            }
        }
        printf("%d\n", head - 1);
    }
    return 0;
}

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值