验证码识别模型

验证码识别是用这个captcha库里面的一些随机组合生成的验证码集合,然后训练模型,进行测试识别

import tensorflow as tf
from captcha.image import ImageCaptcha
import numpy as np  
import matplotlib.pyplot as plt  
from PIL import Image  
import random  
   

number = ['0','1','2','3','4','5','6','7','8','9']  
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']  
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']  

def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):  #这个有几个数字,这个根据你电脑性能自行设置
    captcha_text = []  
    for i in range(captcha_size):  
        c = random.choice(char_set)  
        captcha_text.append(c)  #上面这几行代码把随机生成的字母保存在列表里面
    return captcha_text  
   

def gen_captcha_text_and_image():  
    image = ImageCaptcha()  
   
    captcha_text = random_captcha_text()  #把列表转换成字符串表达
    captcha_text = ''.join(captcha_text)  
   
    captcha = image.generate(captcha_text)  
    #image.write(captcha_text, captcha_text + '.jpg')   
   
    captcha_image = Image.open(captcha)  
    captcha_image = np.array(captcha_image)  
    return captcha_text, captcha_image  #返回我们的数据集和label
if __name__ == '__main__':  
    text, image = gen_captcha_text_and_image()  
   
    f = plt.figure()  
    ax = f.add_subplot(111)  
    ax.text(0.1, 0.9,text, ha='center', va='center', transform=ax.transAxes)  
    plt.imshow(image)  
   
    plt.show()  

生成随机验证码图片如下




下面是训练代和测试代码:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值