- 博客(4)
- 收藏
- 关注
原创 SVM练习题
SVM练习题1.支持向量机的基本思想是什么?A:**SVM分类器在类之间拟合可能的最宽的“街道”。**换言之,它的目的是使决策边界之间的间隔最大化,该决策边界分隔两个类别和训练实例。SVM执行软间隔分类时,实际上是在完美分隔两个类和拥有尽可能最宽的街道之间寻找折中方法(也就是允许少数实例最终还是落在街道上)。还有一个关键点是在训练非线性数据集时,记得使用核函数。2.什么是支持向量?A:决策边界完全由位于“街道”边缘的实例所决定(或者称之为“支持”)。这些实例被称为支持向量。位于“街道”之上的实例被称
2021-08-09 23:06:20 2138
原创 决策树练习题
决策树练习题1.如果训练集有100万个实例,训练决策树(无约束)大致的深度是多少?A:一个包含m个叶节点的均衡二叉树的深度等于log2(m),取整。通常来说,二元决策树(只做二元决策的树,就像Scikit-Learn中的所有树一样)训练到最后大体都是平衡的,如果不加以限制,最后平均每个叶节点一个实例。因此,如果训练集包含100万个实例,那么决策树的深度为log2(106)≈20层(实际上会更多一些,因为决策树通常不可能完美平衡)。2.通常来说,子节点的基尼不纯度是高于还是低于其父节点?是通常更高/更低
2021-08-09 22:45:02 2812
原创 训练模型练习题
4.7 练习题1.如果训练集具有数百万个特征,那么可以使用哪种线性回归训练算法?A:如果你的训练集具有数百万个特征,则可以使用随机梯度下降或小批量梯度下降。如果训练集适合容纳于内存,则可以使用批量梯度下降。但是你不能使用标准方程或SVD(奇异值分解)方法,因为随着特征数量的增加,计算复杂度会快速增长(超过二次方)。2.如果训练集里特征的数值大小迥异,哪种算法可能会受到影响?受影响程度如何?你应该怎么做?A:如果你的训练集中的特征具有不同的尺寸比例,则成本函数具有细长碗的形状,因此梯度下降算法
2021-08-02 09:44:46 369
原创 SVM(一)
SVM(一)简介:支持向量机(Support Vector Machine,SVM)是一个功能强大且全面的机器学习模型,它能够执行线性或非线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一,SVM特别适用于中小型复杂数据集的分类。线性SVM分类SVM的基本思想可以用一些图来说明。左图显示了三种可能的线性分类器的决策边界。其中虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类。其余两个模型在这个训练集上表现堪称完美,但是它们的决策边界与实例过于接近,导致在面对新实例
2021-07-25 15:54:58 179
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人