python手写数字识别dnn_深度学习练手项目——DNN识别手写数字

本文通过Keras库实现了一个深度神经网络(DNN)模型,用于识别MNIST数据集的手写数字。首先加载并预处理数据,然后构建包含两个隐藏层的DNN模型,并使用adam优化器进行训练。在训练完成后,模型在测试集上进行评估,展示了模型的准确性和损失。最后,展示了一些预测错误的案例以分析模型的预测错误原因。
摘要由CSDN通过智能技术生成

该案例主要目的是为了熟悉Keras基本用法,以及了解DNN基本流程。

示例代码:

import numpy as np

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.datasets import mnist

from keras.layers import Dense

from keras.utils.np_utils import to_categorical

#加载数据,训练60000条,测试10000条,X_train.shape=(60000,28,28)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

#特征扁平化,缩放,标签独热

X_train_flat = X_train.reshape(60000, 28*28)

X_test_flat = X_test.reshape(10000, 28*28)

X_train_norm = X_train_flat / 255

X_test_norm = X_test_flat / 255

y_train_onehot = to_categorical(y_train, 10) #shape为(60000,10)

y_test_onehot = to_categorical(y_test, 10) #shape为(10000,10)

#构建模型

model = Sequential()

model.add(Dense(100, activation='

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值