前言
我们把玻璃杯摆成金字塔的形状,其中 第一层 有 1 个玻璃杯, 第二层 有 2 个,依次类推到第 100 层,每个玻璃杯 (250ml) 将盛有香槟。
从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)
例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟,如下图所示。
现在当倾倒了非负整数杯香槟后,返回第 i 行 j 个玻璃杯所盛放的香槟占玻璃杯容积的比例( i 和 j 都从0开始)。
一、代码实现
//动态规划
double champagneTower(int poured, int query_row, int query_glass)
{
//int *dp = (int *)malloc(sizeof(int) * (query_row * query_row));
double dp[query_row + 1][query_row + 1];
dp[0][0] = poured;
for (int i = 1; i <= query_row; i++)
{
for(int j = 0; j <= query_glass; j++)
{
dp[i][j] = 0;
//第一个杯子
if (j == 0)
{
(dp[i-1][j] > 1) ? (dp[i][j] = (dp[i-1][j] - 1) / 2) : 0;
}
//最后一个杯子
else if ( i == j)
{
(dp[i-1][j-1] > 1) ? (dp[i][j] = (dp[i-1][j-1] - 1) / 2) : 0;
}
else
{
(dp[i-1][j] > 1) ? (dp[i][j] += (dp[i-1][j] - 1) / 2) : 0;
(dp[i-1][j-1] > 1) ? (dp[i][j] += (dp[i-1][j-1] - 1) / 2) : 0;
}
}
}
return dp[query_row][query_glass] > 1 ? 1 : dp[query_row][query_glass];
}