高斯信道模型

带限信号的采样与重构

考虑sinc函数(与matlab自带的sinc函数有所区别)
s i n c ( t ) = s i n ( 2 π W t ) 2 π W t sinc(t)=\frac{sin(2\pi Wt)}{2\pi Wt} sinc(t)=2πWtsin(2πWt)

W=1; % 信号带宽,单位为赫兹。
Ts=1/(2*W); % Nyquist–Shannon 采样定理给出的最大采样周期。
Ts = Ts/10; % 我们在这里使用更小的采样周期是为了观察到sinc函数的细节。
sample_num = 101;
t=([1:sample_num]-ceil(sample_num/2))*Ts;
t0_idx = ceil(sample_num/2); % t等于零的下标。
t1_idx = [1:t0_idx-1,t0_idx+1:sample_num]; % t不等于零的下标。
sict = zeros(1,sample_num);
sinct(t0_idx) = 1;
sinct(t1_idx) = sin(2*pi*W*t(t1_idx))./(2*pi*W*t(t1_idx));
plot(t,sinct,'-k');
ylabel('sinc(t)');
hold on;
t2_indices = [flip(t0_idx:-10:1),t0_idx+10:10:sample_num]; % 使用Nyquist–Shannon 最大采样周期采样对应的时间下标。
plot(t(t2_indices),sinct(t2_indices),'*r');
hold off;

在这里插入图片描述
可以观察到sinc函数有如下特点:(1)在时域,t=0时函数值等于1,在t=n/(2W)(n不等于零)处函数值均为零。(2)在频域,在[-W,W]带宽内为常数,在其他范围均为零,形状为矩形。sinc(t)为带限信号。
sinc函数可以被用于重构采样的离散信号到连续信号,又被称为理想低通滤波器的冲激响应。考虑下述g(t)函数(也可理解为信号)
g ( t ) = ∑ n = − ∞ ∞ f ( n 2 W ) s i n c ( t − n 2 W ) g(t)=\sum_{n=-\infty}^\infty f(\frac{n}{2W})sinc(t-\frac{n}{2W}) g(t)=n=f(2Wn)sinc(t2Wn)
可以发现g(t)在t=n/(2W)时间点上均等于f(t)。更神奇的是g(t)通过sinc函数完美重构了连续信号f(t),即g(t)=f(t),证明可以从频域分析,略过。前提是f(t)是带限信号,带宽为W。

连续高斯信道模型

y ( t ) = ( x ( t ) + z ( t ) ) ∗ h ( t ) y(t)=(x(t)+z(t))*h(t) y(t)=(x(t)+z(t))h(t)
其中表示卷积,x(t)为输入信号,z(t)为双边功率谱密度为瓦特每赫兹的高斯白噪声,h(t)为信道冲激响应,y(t)为输出信号。实际通信信道均为带限信道,h(t)的带宽为W。由于高斯白噪声的频谱为常数,所以z(t)的功率为。假设x(t)的功率为P,则信噪比为。

离散高斯信道模型

由于现代通信系统都是数字通信系统,连续信号需要转换为离散信号进行处理,下面我们通过对上述连续高斯信道进行采样(采样周期为)得到对应的离散高斯信道
y ( n 2 W ) = ( x ( n 2 W ) + z ( n 2 W ) ) ∗ h ( n 2 W ) y\left(\frac{n}{2W}\right)=\left(x\left(\frac{n}{2W}\right)+z\left(\frac{n}{2W}\right)\right)*h\left(\frac{n}{2W}\right) y(2Wn)=(x(2Wn)+z(2Wn))h(2Wn)
Y ( m ) = y ( n 2 W ) , X ( m ) = x ( n 2 W ) , Z ( m ) = z ( n 2 W ) , H ( m ) = h ( n 2 W ) Y(m)=y\left(\frac{n}{2W}\right),X(m)=x\left(\frac{n}{2W}\right),Z(m)=z\left(\frac{n}{2W}\right),H(m)=h\left(\frac{n}{2W}\right) Y(m)=y(2Wn),X(m)=x(2Wn),Z(m)=z(2Wn),H(m)=h(2Wn),得到
Y ( m ) = ( X ( m ) + Z ( m ) ) ∗ H ( m ) Y(m)=(X(m)+Z(m))*H(m) Y(m)=(X(m)+Z(m))H(m)
下面计算X(m)的功率,这里连续信号到离散信号需遵循能量守恒定理。假设x(t)的时长为T,则其能量为PT。由于采样得到2WT个样本,因此每个样本的功率为。类似地Z(m)的功率为。信噪比为,与连续信道模型求得的一致。

W=1e5; % 信号带宽,单位为赫兹。
Ts=1/(2*W); % Nyquist–Shannon 采样定理给出的最大采样周期。
sample_num = 200;
t=([1:sample_num]-1)*Ts;
P = 1;
N0 = 10^(-20.4); % -174dBm/Hz
SNR_dB = 10*log10(P/W/N0);
xm = (randn(1,sample_num)+1i*randn(1,sample_num))/sqrt(2)*P/(2*W);
zm = (randn(1,sample_num)+1i*randn(1,sample_num))/sqrt(2)*N0/2;
channel_delay = 8;
hm = [zeros(1,channel_delay), 1, 0.8, 0.5, 0.2, 0, -0.1, zeros(1,sample_num-channel_delay-6)];
tmp = conv([xm+zm,zeros(1,channel_delay)],hm);
ym = tmp(1+channel_delay:channel_delay+sample_num);
subplot(311);
plot(1:sample_num,real(xm));
ylabel('xm real');
subplot(312);
plot(1:sample_num,real(xm+zm));
ylabel('xm+zm  real');
subplot(313);
plot(1:sample_num,real(ym));
ylabel('ym  real');

在这里插入图片描述

结论

由高斯信道中的信噪比为 P / N 0 W P/N_0W P/N0W可以得知,信道带宽越大,叠加到输入信号的噪声的功率也就越大。再从传输速率角度来看带宽的影响,从信道容量 C = W l o g ( 1 + P / ( N 0 W ) ) C=Wlog(1+P/(N_0W)) C=Wlog(1+P/N0W)公式可以得知,带宽W出现在公式的两个部分,分别起到相反的作用。但第一部分占主导地位,可以近似看成信道容量与带宽成正比。

figure;
P = 1;
N0 = 10^(-20.4); % -174dBm/Hz
W = linspace(1,1e7,1000);
C = W.*log2(1+P/N0./W);
plot(W,C);
ylabel('Channel Capacity (bits/s)');
xlabel('W (Hz)');

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值