带限信号的采样与重构
考虑sinc函数(与matlab自带的sinc函数有所区别)
s
i
n
c
(
t
)
=
s
i
n
(
2
π
W
t
)
2
π
W
t
sinc(t)=\frac{sin(2\pi Wt)}{2\pi Wt}
sinc(t)=2πWtsin(2πWt)
W=1; % 信号带宽,单位为赫兹。
Ts=1/(2*W); % Nyquist–Shannon 采样定理给出的最大采样周期。
Ts = Ts/10; % 我们在这里使用更小的采样周期是为了观察到sinc函数的细节。
sample_num = 101;
t=([1:sample_num]-ceil(sample_num/2))*Ts;
t0_idx = ceil(sample_num/2); % t等于零的下标。
t1_idx = [1:t0_idx-1,t0_idx+1:sample_num]; % t不等于零的下标。
sict = zeros(1,sample_num);
sinct(t0_idx) = 1;
sinct(t1_idx) = sin(2*pi*W*t(t1_idx))./(2*pi*W*t(t1_idx));
plot(t,sinct,'-k');
ylabel('sinc(t)');
hold on;
t2_indices = [flip(t0_idx:-10:1),t0_idx+10:10:sample_num]; % 使用Nyquist–Shannon 最大采样周期采样对应的时间下标。
plot(t(t2_indices),sinct(t2_indices),'*r');
hold off;
可以观察到sinc函数有如下特点:(1)在时域,t=0时函数值等于1,在t=n/(2W)(n不等于零)处函数值均为零。(2)在频域,在[-W,W]带宽内为常数,在其他范围均为零,形状为矩形。sinc(t)为带限信号。
sinc函数可以被用于重构采样的离散信号到连续信号,又被称为理想低通滤波器的冲激响应。考虑下述g(t)函数(也可理解为信号)
g
(
t
)
=
∑
n
=
−
∞
∞
f
(
n
2
W
)
s
i
n
c
(
t
−
n
2
W
)
g(t)=\sum_{n=-\infty}^\infty f(\frac{n}{2W})sinc(t-\frac{n}{2W})
g(t)=n=−∞∑∞f(2Wn)sinc(t−2Wn)
可以发现g(t)在t=n/(2W)时间点上均等于f(t)。更神奇的是g(t)通过sinc函数完美重构了连续信号f(t),即g(t)=f(t),证明可以从频域分析,略过。前提是f(t)是带限信号,带宽为W。
连续高斯信道模型
y
(
t
)
=
(
x
(
t
)
+
z
(
t
)
)
∗
h
(
t
)
y(t)=(x(t)+z(t))*h(t)
y(t)=(x(t)+z(t))∗h(t)
其中表示卷积,x(t)为输入信号,z(t)为双边功率谱密度为瓦特每赫兹的高斯白噪声,h(t)为信道冲激响应,y(t)为输出信号。实际通信信道均为带限信道,h(t)的带宽为W。由于高斯白噪声的频谱为常数,所以z(t)的功率为。假设x(t)的功率为P,则信噪比为。
离散高斯信道模型
由于现代通信系统都是数字通信系统,连续信号需要转换为离散信号进行处理,下面我们通过对上述连续高斯信道进行采样(采样周期为)得到对应的离散高斯信道
y
(
n
2
W
)
=
(
x
(
n
2
W
)
+
z
(
n
2
W
)
)
∗
h
(
n
2
W
)
y\left(\frac{n}{2W}\right)=\left(x\left(\frac{n}{2W}\right)+z\left(\frac{n}{2W}\right)\right)*h\left(\frac{n}{2W}\right)
y(2Wn)=(x(2Wn)+z(2Wn))∗h(2Wn)
令
Y
(
m
)
=
y
(
n
2
W
)
,
X
(
m
)
=
x
(
n
2
W
)
,
Z
(
m
)
=
z
(
n
2
W
)
,
H
(
m
)
=
h
(
n
2
W
)
Y(m)=y\left(\frac{n}{2W}\right),X(m)=x\left(\frac{n}{2W}\right),Z(m)=z\left(\frac{n}{2W}\right),H(m)=h\left(\frac{n}{2W}\right)
Y(m)=y(2Wn),X(m)=x(2Wn),Z(m)=z(2Wn),H(m)=h(2Wn),得到
Y
(
m
)
=
(
X
(
m
)
+
Z
(
m
)
)
∗
H
(
m
)
Y(m)=(X(m)+Z(m))*H(m)
Y(m)=(X(m)+Z(m))∗H(m)
下面计算X(m)的功率,这里连续信号到离散信号需遵循能量守恒定理。假设x(t)的时长为T,则其能量为PT。由于采样得到2WT个样本,因此每个样本的功率为。类似地Z(m)的功率为。信噪比为,与连续信道模型求得的一致。
W=1e5; % 信号带宽,单位为赫兹。
Ts=1/(2*W); % Nyquist–Shannon 采样定理给出的最大采样周期。
sample_num = 200;
t=([1:sample_num]-1)*Ts;
P = 1;
N0 = 10^(-20.4); % -174dBm/Hz
SNR_dB = 10*log10(P/W/N0);
xm = (randn(1,sample_num)+1i*randn(1,sample_num))/sqrt(2)*P/(2*W);
zm = (randn(1,sample_num)+1i*randn(1,sample_num))/sqrt(2)*N0/2;
channel_delay = 8;
hm = [zeros(1,channel_delay), 1, 0.8, 0.5, 0.2, 0, -0.1, zeros(1,sample_num-channel_delay-6)];
tmp = conv([xm+zm,zeros(1,channel_delay)],hm);
ym = tmp(1+channel_delay:channel_delay+sample_num);
subplot(311);
plot(1:sample_num,real(xm));
ylabel('xm real');
subplot(312);
plot(1:sample_num,real(xm+zm));
ylabel('xm+zm real');
subplot(313);
plot(1:sample_num,real(ym));
ylabel('ym real');
结论
由高斯信道中的信噪比为 P / N 0 W P/N_0W P/N0W可以得知,信道带宽越大,叠加到输入信号的噪声的功率也就越大。再从传输速率角度来看带宽的影响,从信道容量 C = W l o g ( 1 + P / ( N 0 W ) ) C=Wlog(1+P/(N_0W)) C=Wlog(1+P/(N0W))公式可以得知,带宽W出现在公式的两个部分,分别起到相反的作用。但第一部分占主导地位,可以近似看成信道容量与带宽成正比。
figure;
P = 1;
N0 = 10^(-20.4); % -174dBm/Hz
W = linspace(1,1e7,1000);
C = W.*log2(1+P/N0./W);
plot(W,C);
ylabel('Channel Capacity (bits/s)');
xlabel('W (Hz)');