信道估计
序号 | 文章标题 | 代码链接 | 年份 | 文章来源 |
---|---|---|---|---|
1 | Deep Learning at the Edge for Channel Estimation in Beyond-5G Massive MIMO | github | 2021 | IEEE Wireless Communications |
2 | Deep Transfer Learning Based Downlink Channel Prediction for FDD Massive MIMO Systems | github | 2019 | IEEE Transactions on Communications |
文献[1]有以下几点值得借鉴:1)代码可以在linux操作系统中使用shell脚本语言自动运行matlab生成信道数据,再调用python进行网络训练和测试。整体的代码编写规范可读性强。2)如下图所示,对于MIMO信道估计问题,网络的输出为一对收发天线 ( n R , n T ) (n_R,n_T) (nR,nT)对应的K个OFDM子载波的CSI,网络的输入为第 n R n_R nR个接收天线接收到的时域信号。能够这样设计的原因在于每一对收发天线对应的CSI可以独立地被估计,可以对比MIMO-OFDM系统的信道估计过程。可以看出,这种架构的网络参数量与收发天线数无关,参数量较小。通过设置batch size为收发 N R × N T N_R\times N_T NR×NT,可以并行的输出所有收发天线的CSI。3)添加噪声层,使得网络可以应用于不同信噪比的情况。4)数据标签使用无噪接收信号采用LS或LMMSE估计得到。
文献[2]使用迁移学习解决已经训练好的深度学习网络应用到新的信道环境,用于预测FDD系统的下行信道信息。室外的大规模MIMO仿真采用3D射线追踪仿真软件Remcom Wireless Insite,该软件能在复杂的大型地理区域、市区、室内环境或这些条件混合的环境中,对电磁波传递路径以及通讯系统各频道工作特性进行仿真与预测,但它并不是一款免费的软件。它是一个专业的无线通信仿真工具,需要购买相应的许可证才能使用。
波束优化
序号 | 文章标题 | 代码链接 | 年份 | 文章来源 |
---|---|---|---|---|
1 | Beamforming Design for Large-Scale Antenna Arrays Using Deep Learning | github | 2020 | IEEE Wireless Communication Letters |
如下图所示,文献[1]考虑的是大规模MIMO采用有限射频链路,使用相位偏移的波束赋形,当优化变量数目较大时,优化问题的求解非常困难。文献[1]使用与频谱效率有关的损失函数避免了对数据设置标签的麻烦。
信道状态预测
序号 | 文章标题 | 代码链接 | 年份 | 文章来源 |
---|---|---|---|---|
1 | A Deep Learning Model for Wireless Channel Quality Prediction | github | 2019 | IEEE International Conference on Communications |
准确地建模和预测无线信道质量的变化对于许多网络应用至关重要,例如4G LTE网络中的调度和改进的视频流传输,以及WiFi网络中的比特率调整以提高性能。文献[1]提出了一种基于编码器-解码器的序列到序列深度学习模型,该模型能够根据过去的信号强度数据预测未来的无线信号强度变化。作者考虑了两种不同版本的深度学习模型:即分别使用LSTM和GRU作为其基本单元结构。
预测问题的前提是可预测性,即后一时刻的信道信息与之前时刻的信道相关,相关性越大,越容易预测。
发送端到接收端
序号 | 文章标题 | 代码链接 | 年份 | 文章来源 |
---|---|---|---|---|
1 | An Introduction to Deep Learning for the Physical Layer | github | 2017 | IEEE Transactions on Cognitive Communications and Networking |
2 | Benchmarking End-to-end Learning of MIMO Physical-Layer Communication | github | 2020 | IEEE Global Communications Conference |
文献[1]通过将通信系统解释为自编码器,开发了一种新的通信系统设计方法,将其视为一个端到端的重建任务,旨在在单个过程中联合优化发射机和接收机的组件,展示了如何将这一思想扩展到多个发射机和接收机的网络。
使用自编码器建模收发端模型的问题在于,模型中的信道模型为窄带MIMO再加高斯白噪声,对于更复杂的信道则更难使用深度学习框架实现。
Radio Transformer Networks
序号 | 文章标题 | 代码链接 | 年份 | 文章来源 |
---|---|---|---|---|
1 | Radio Transformer Networks: Attention Models for Learning to Synchronize in Wireless Systems | - | 2016 | 2016 50th Asilomar Conference on Signals, Systems and Computers |
如下图所示,文献[1]将学习的注意力模型引入无线电机器学习领域,用于调制识别的任务,通过利用空间变换网络并引入新的适用于无线电领域的变换。这种注意力模型允许网络学习一个定位网络,该网络能够基于网络对分类准确性、稀疏表示和正则化的优化,盲目地同步和标准化无线电信号,而无需了解信号结构的任何知识。