matlab求解参数线性规划问题,实验三十用MATLAB求解线性规划问题

本文详细介绍了如何使用MATLAB的linprog函数解决线性规划问题,包括目标函数、约束条件、非负约束等概念,并通过具体实例演示了MATLAB程序的编写和运行过程,展示了求解线性规划问题的步骤和结果。
摘要由CSDN通过智能技术生成

《实验三十用MATLAB求解线性规划问题》由会员分享,可在线阅读,更多相关《实验三十用MATLAB求解线性规划问题(27页珍藏版)》请在人人文库网上搜索。

1、实验三十 用MATLAB求解线性规划问题,一、实验目的,了解MATLAB的优化工具箱,能利用MATLAB求解线性规划问题,二、相关知识,线性规划是运筹学中研究得比较早,理论上已趋于成熟,在方法上非常有效,并且应用广泛的一个重要分支。 线性规划的数学模型有各种不同的形式,其一般形式可以写为: 目标函数为 ,约束条件为,二、相关知识,这里 称为目标函数, 称为价值系数, 称为价值向量, 为求解的变量,由系数 组成的矩阵,这里 称为目标函数, 称为价值系数, 称为价值向量, 为求解的变量,由系数 组成的矩阵 称为不等式约束矩阵,由系数 组成的矩阵 称为等式约束矩阵,列向量 和 为右端向量,条件 称为。

2、非负约束。 一个满足约束条件的向量 ,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最称为不等式约束矩阵,由系数 组成的矩阵 称为等式约束矩阵,列向量 和 为右端向量,条件 称为非负约束。 一个满足约束条件的向量 ,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。 求解线性规划问题已有一些成熟的方法,我们这里介绍利用MATLAB来求解线性规划问题的求解,求解线性规划问题已有一些成熟的方法,我们这里介绍利用MATLAB来求解线性规划问题的求解。 在MA。

3、TLAB中有一个专门的函数linprog()来解决这类问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值