⸢ 肆 ⸥ ⤳ 默认安全建设方案:b.安全资产建设

👍点「赞」📌收「藏」👀关「注」💬评「论」


       在金融科技深度融合的背景下,信息安全已从单纯的技术攻防扩展至架构、合规、流程与创新的系统工程。作为一名从业十多年的老兵,将系统阐述数字银行安全体系的建设路径与方法论,旨在提出一套可落地、系统化、前瞻性的新一代安全架构。


序号主题内容简述
1安全架构概述全局安全架构设计,描述基础框架。
👉2默认安全标准化安全策略,针对已知风险的标准化防控(如基线配置、补丁管理)。
3可信纵深防御多层防御体系,应对未知威胁与高级攻击(如APT攻击、零日漏洞)。
4威胁感知与响应

实时监测、分析威胁,快速处置安全事件,优化第二、三部分策略。

5实战检验通过红蓝对抗演练验证防御体系有效性,提升安全水位。
6安全数智化运用数据化、自动化、智能化(如AI)提升安全运营(各部分)效率。

目录

​编辑

4.默认安全建设方案

4.2 安全资产建设

4.2.1 传统资产

1.资产收集的细腻度?

2.如何构建细粒度资产数据?

4.2.2 数据资产

1. 数据资产➭盘点

(1)数据资产分类盘点

(2)数据资产分级分类

(3)自动扫描与识别机制

(4)数据链路可视化

2. 数据资产➭风险治理

(1)数据风险地图

(2)数据流动的合规管控

(3)支持安全威胁感知与响应运营

4.2.3 资产数据质量

4.2.4 大数据平台类资产

1. 与传统资产的差异

2.安全建议

4.2.5 风险治理、防护与度量

1. 治理与防护的挑战

2. 基于资产数据的度量解决方案

👍点「赞」➛📌收「藏」➛👀关「注」➛💬评「论」


4.默认安全建设方案

4.2 安全资产建设

        资产是企业安全体系中的核心要素,它定义了企业在互联网及内部网络中的“坐标”,同时也是外部攻击者重点搜集的目标。
        安全风险总是依附于资产而存在,风险的实体往往就是各类资产。传统的资产概念多局限于服务器、域名等运维视角的资产,而在现代安全体系中,资产的范畴进一步扩展,还包括:用户数据、服务器配置信息、API接口等广义资产。资产信息的全面性和准确性,直接决定了企业识别和治理安全风险的能力
        因此,安全资产建设成为构建企业安全体系的基石。整体来看,安全资产的建设可分为三个基本步骤:

  • 识别需防护的资产:明确资产范围,建立资产清单。

  • 识别资产上的风险:基于资产信息,发现潜在威胁与薄弱点。

  • 风险治理与防护:实施防护措施,并持续评估整体资产风险水平。


4.2.1 传统资产

        首先需明确数据收集的范围,界定哪些资产需纳入防护体系。传统意义上的资产主要包括:

  • 域名IP地址

  • 虚拟机容器

  • 物理服务器

  • 负载均衡器

  • 数据库

  • 代码库

        这些是外部攻击者重点关注的部分,用于寻找公网入口,尝试渗透内网
        企业在发展过程中通常已建立起相应的管理系统,尽管随着技术架构演进,原始数据源可能存在重叠、遗漏或错误,但通过构建中间逻辑层进行清洗与计算,仍可形成初步可用的资产清单,并通过持续优化满足基本需求。

1.资产收集的细腻度?

🔍 从“有资产”到“看得清风险”

        然而,仅凭域名、IP等较粗粒度的资产数据,难以实现真正的“全局视野”,也无法有效识别资产风险。攻击者在获取一批域名或IP后,往往会进一步探测:

  • 域名背后有哪些接口

  • IP开放了哪些端口与服务

        企业同样需如此,只有将资产数据进一步细化,才能更准确地发现潜在安全隐患。

⚙️ 资产应细化至“可实战”粒度

        安全资产的粒度应细化至可直接进入漏洞挖掘阶段的水平。例如:

资产类型传统粒度安全建设应达到的粒度可直接测试的风险示例
IP + 端口开放端口运行的服务(如Redis)未授权访问
Web应用域名接口地址+参数+认证方式+功能场景XSS、文件上传、SSRF等
虚拟机/容器存在与否常驻进程+系统软件包(RPM/DEB)+依赖库(Jar/pip包)已知漏洞组件、配置缺陷

📊 表:资产信息细化对比示意

资产类型应细化的信息维度具体示例可直接测试的安全风险/漏洞示例常见发现方式
IP/端口服务运行的服务类型及版本某IP的XX端口开放Redis服务未授权访问Nmap等端口扫描工具

Web应用

/RPC服务

接口地址(URL/API)/api/v1/user/update越权操作、注入漏洞流量分析、爬虫
请求参数(Params/Body)?id=1&name=adminSQL注入、参数污染流量分析、爬虫
权限认证体系Cookie认证、JWT Token、OAuth 2.0认证绕过、Token篡改流量分析、人工审计
功能场景文件上传、富文本编辑、Groovy脚本执行文件上传漏洞、XSS、代码执行流量特征分析、人工标识
虚拟机/容器常驻进程nginx, java, redis-server未知恶意进程、配置风险Agent采集、运维通道
开放端口22, 80, 443, 6379未授权访问、不必要的服务暴露内部端口扫描
系统软件包openssl-1.1.1k (RPM)系统级漏洞(如CVE)包管理器查询(rpm, dpkg)
业务依赖log4j-1.2.17.jar, requests==2.25.1应用级组件漏洞(如Log4Shell)依赖分析工具(pip, maven)

2.如何构建细粒度资产数据?

这类细粒度数据往往没有现成的原始数据源,需企业自主建设,常见方式包括:

  • Web应用:通过网络流量监测,提取“域名+接口+参数”信息,并依据请求/响应特征识别功能场景与潜在风险。

  • 虚拟机/容器:通过运维通道下发采集任务,获取进程、端口、软件包、依赖库等详细信息。

        通过这些方法,企业可逐步构建起一份可供安全工程师直接使用、无需手动二次收集的高精度资产数据库,极大提升安全运营与风险发现的效率。

📌 提示:安全资产的建设不仅是“有哪些资产”,更是“资产上有哪些风险”。通过细化资产信息至可操作粒度,并建立自动化采集与更新机制,才能建立起真正有效的安全防护基础。


4.2.2 数据资产

        数字银行在其业务过程中积累了体量庞大来源多样类别繁多的数据资产,且业务持续发展推动数据规模加速增长。数据资产是数字银行的核心价值载体,因此,系统性盘点数据资产并实现持续集中化管理与监控,是信息安全治理的重要基础。

1. 数据资产➭盘点
(1)数据资产分类盘点

        为全面覆盖数据资产,可从多个维度进行分类盘点,以满足不同业务与安全场景的需求:

  • 📊 按数据结构
    ▪ 结构化数据(如MySQL、Oracle等关系型数据库)
    ▪ 半结构化数据(如JSON、XML等)
    ▪ 非结构化数据(如系统日志、图像、视频、合同文档等)

  • 📁 按数据形态
    ▪ 数据库存储
    ▪ 文件存储(对象存储、NAS等)
    ▪ 网页内容
    ▪ 实时流数据(如Kafka消息流)

  • 🧩 按业务归属:
    ▪ 营销数据
    ▪ 采购与供应链数据
    ▪ 财务数据
    ▪ 生态合作伙伴数据

  • 📍 按数据位置
    ▪ 公有云/私有云/混合云
    ▪ 离线移动设备
    ▪ 员工终端设备

  • 🔒 按敏感程度
    ▪ 用户个人金融信息
    ▪ 用户隐私数据
    ▪ 商业机密数据

(2)数据资产分级分类

        为实现数据的安全管理与精准防护,企业需对数据资产实施分级分类,并以此为基础制定差异化保护策略,平衡数据价值与安全风险。

📘 数据敏感级别定级参考框架:

敏感等级影响对象影响程度说明
5级国家安全、金融稳定严重损害国家经济利益或金融秩序
4级企业声誉、公共利益造成重大经济损失或社会负面影响
3级用户隐私、企业商业机密导致用户隐私泄露或核心商业秘密曝光
2级内部管理、一般业务信息对内部运营造成一定干扰但不涉及核心机密
1级公开信息可公开披露,无安全风险

数据类别的划分可结合实际业务特征设计为多层级的树形结构,常见如:

  • 用户数据:用户行为数据、设备数据、交易数据、生物识别信息等;

  • 业务数据:交易记录、业务报表、风控数据等;

  • 运营数据:系统日志、操作日志、账户信息等。

最终可构建分级分类矩阵,明确每类数据的安全等级与控制要求:

📊 数据分级分类矩阵:

数据类别5级4级3级2级1级
用户生物信息
交易记录
业务运营日志
公开市场报告

(3)自动扫描与识别机制

        在明确分级标准的基础上,需建立自动化扫描与识别机制,实现数据资产的持续发现与分类。扫描范围应覆盖所有可能的数据存储载体:

  • 🗃️ 数据库系统(关系型、NoSQL、数据仓库等)

  • 📂 文件与对象存储(S3、OSS、NAS等)

  • 📟 日志系统(ELK、Splunk等)

  • 💻 终端设备与移动设备

  • 📎 非员工个人可移动设备

        识别引擎应支持规则灵活配置,适应数据特征与分类分类标准的动态变化,并通过周期性扫描实现数据资产地图的动态更新,为安全策略制定与资源分配提供依据。

(4)数据链路可视化

        单纯识别独立数据资产仍不足够,还需通过数据链路可视化技术,刻画数据在不同载体(如数据库、API、应用、终端等)之间的流动路径,构建完整的数据血缘关系。实现这一目标需依赖两类技术支持:

  • 📥 多源日志采集:通过SQL解析、代码埋点、流量镜像等方式,捕获各节点数据处理行为;

  • 🧹 数据融合与图谱构建:对异构日志进行清洗、补全与关联分析,最终形成统一的数据关系图谱

        数据链路可视化不仅支撑安全风险治理(如数据泄露溯源、异常访问分析),也能为业务团队(如数据开发、运维)提供血缘查询与影响分析能力,提升数据协作与运维效率。


2. 数据资产➭风险治理

        数据资产风险治理:旨在依据数据安全基线要求,在威胁发生前系统性识别和修复数据资产中的潜在风险,以降低安全事件发生概率及影响。该治理体系依赖于前期数据盘点、分级分类与链路可视化成果,是实现数据安全闭环管理的关键环节。

(1)数据风险地图

        在数据资产分布与链路可视化的基础上,可进一步绘制数据风险地图,实现对安全风险的全局洞察与精准治理。

  • 生命周期风险分析:沿数据流转路径(创建、传输、使用、存储、销毁)识别敏感数据在各环节的安全薄弱点。

  • 地图要素整合:构建涵盖系统节点、流转渠道、风险清单的动态地图,并持续更新修复状态。

  • 分级治理策略

    • 横向治理:聚焦同一安全能力在不同节点的一致性保障。
      示例:数据加密能力应在传输、存储各个环节统一实施,确保数据机密性与完整性。

    • 纵向治理:聚焦单一节点的多重安全控制。
      示例:核心数据平台需同时实施权限管控、用户行为分析、流量监测等安全能力。

治理类型关注点典型案例举例目标
横向治理同一能力跨节点覆盖全链路数据加密安全水位统一
纵向治理多能力单节点深化大数据平台的权限管控+行为审计+流量解析节点防御纵深
(2)数据流动的合规管控

        数据链路可视化能力为合规管控提供基础,确保每次数据流转合规可审计

管控方面控制目标控制措施举例
授权管控防止未授权访问身份验证、最小权限、定期权限复审
操作审计事后可追溯全量日志记录、操作关联分析
(3)支持安全威胁感知与响应运营

        数据链路为安全运营提供关键上下文,赋能威胁感知与应急响应

  • 异常行为感知

    • 基于数据流转态势制定安全基线,监测异常数据操作(如未授权访问、大规模遍历下载、异常数据外传等);

  • 安全事件响应与溯源

    • 发生数据安全事件(如泄露)时,依托链路信息快速定位泄露点、路径与相关主体;

    • 支撑针对性处置与漏洞修复,防止同类事件再次发生。


4.2.3 资产数据质量

        为确保资产数据质量,可从以下三个维度系统性地进行建设和保障:

维度目标关键措施实施示例
👨‍💻 研发管控保障数据链路稳定可靠制定严谨代码审查(Code Review)机制;变更前进行数据差异对比SQL/脚本变更前需进行数据影响分析,审核通过后方可执行
🛠️ 运维保障及时发现并处理异常对上游数据任务配置非空校验波动率监测等规则;设置异常告警并及时处理数据表产出任务失败或波动超阈值时,自动触发告警并通知负责人
🔍 交叉验证弥补上游数据缺陷通过外部扫描(如子域名枚举、B/C段IP扫描)获取补充数据,与内部资产库进行碰撞验证通过主动扫描发现未知或遗漏资产,并入资产库避免防护盲区

💡 交叉验证的重要性:上游数据并非总是全面和准确。通过模拟攻击者视角(如大规模目标扫描)主动发现未知资产,可提前规避因数据遗漏导致的安全风险,极大降低被恶意利用的概率。


4.2.4 大数据平台类资产

        随着技术架构演进,大数据平台(如Hadoop、Spark、GPU计算集群等)已成为关键业务组件,但其安全风险特征与传统资产迥异,需采用新的安全视角与方法。

1. 与传统资产的差异
特征传统资产(如Web服务、服务器)大数据平台类资产
风险可见性端口开放、服务暴露、网络流量可见风险常隐藏在应用内/应用间数据流转
防护重点网络层、主机层防护数据流处理逻辑组件依赖API权限
典型风险未授权访问、服务漏洞组件漏洞(如低版本Fastjson)、数据泄露、非授权数据访问
2.安全建议
  • 此类资产通常无开放端口,业务流量难以反映内部风险,真正的攻击面存在于数据流转链路上。

  • 加强代码库、镜像及软件供应链的收集与管理:最终风险实体大概率源于代码缺陷、镜像漏洞或依赖组件问题(如Log4j、Fastjson漏洞)。

  • 示例攻击路径:公网Web应用接收用户数据 → 流处理任务分析数据 → 因低版本Fastjson漏洞导致后台大数据集群被攻陷。由于防护措施常聚焦公网业务,此类内网攻击路径的破坏性往往更严重。

⚠️ 注意:安全风险始终依附于资产而存在。对于新形态资产,需调整风险评估方法,重点关注数据流应用交互供应链安全


4.2.5 风险治理、防护与度量

识别资产与风险仅是起点,有效的治理防护度量才是安全闭环管理的关键。

1. 治理与防护的挑战
  • 依赖人工统计治理进展与产品覆盖率时,存在工作量大统计口径不一致易遗漏例外情况(如非标准应用未覆盖RASP)等问题。

  • 可能导致表面覆盖全面,实际存在防护盲区,攻击发生时仍“四处漏风”。

2. 基于资产数据的度量解决方案

为实现有效度量与运营,应为每个安全建设项目提供清晰的资产数据支撑:

  • 明确资产范围与标签字段:资产数据中需包含全量应用列表,并标记关键属性(如:“是否执行标准研发流程”)。

  • 关联防护产品状态:将防护产品(如RASP)的覆盖状态、策略下发情况作为标签关联至资产数据。

  • 实现全局风险可视:通过数据对接,全局视角可清晰展示:当前存在哪些风险、各防护产品覆盖范围与进度,从而准确判断整体风险水位。

参考资料:《数字银行安全体系构建》


👍点「赞」➛📌收「藏」➛👀关「注」➛💬评「论」

🔥您的支持,是我持续创作的最大动力!🔥

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Whoami!

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值