大于3小于4的整数bleem_()预警法侧重定量分析。A.黑色B.红色C.黄色D.蓝色...

这篇内容讨论了企业在长期和短期中的生产决策,特别是如何在平均成本最低点进行生产以实现利润最大化。文章涉及了数轴上的点与整数、有理数的关系,以及在数轴上表示和比较各种数值。同时,提到了市场竞争下企业对要素需求的决策,包括成本和收益的分析。
摘要由CSDN通过智能技术生成

在长期中,不同规模的企业都在其平均成本的最低点从事生产。

在长期中,不同规模的企业都在其平均成本的最低点从事生产。

与表示数1的点距离为3的点有()个,是()

π=TR-TC,则利润最大化的条件为:(1);(2)。

与数轴上的点一一对应的数是[ ]A、自然数 B、整数 C、有理数 D、实数

如图,数轴有a、b两个数,则下列结论中不正确的[ ]A、a>0B、a·b<0>

某完全竞争企业的总成本函数和总收益函数分别为: STC=q3-4q2+8q+4 TR=4q 其中,产量单位为千件,成本及收

π=TR-TC,则利润最大化的条件为:(1);(2)。

如下图,根据a、b、c三个数表示在数轴上的情况,下列关系正确的是[ ]A、a<c B、a+b<0 C、|a|<|c| D、bc<0

已知A点坐标为a ,B点的坐标为b ,且a<b,则点A在点B()边。

在短期内,如果企业只有一种变动要素投入,那么要素的边际生产价值曲线便是企业对它的需求曲线,这也即是MR=MC

有理数a、b、c在数轴上对应点如图所示,那么下列各式不正确的是[ ]A. abc>0 B. a+b>0 C. b+c>0 D.

在长期中,不同规模的企业都在其平均成本的最低点从事生产。

如果一个竞争性企业雇用的最后一名工人所创造的产值大于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值