基于matlab的bp神经网络,基于MATLAB的BP神经网络建模及系统仿真 (1)

文章编号:1001—9944(2001)01—0034—03

基于M AT LAB 的BP 神经网络建模及系统仿真

Ξ

侯北平,卢 佩

(天津轻工业学院自动化系,天津 300222)

摘 要:将M A TLAB 中的神经网络工具箱和Si m ulink 有机结合起来,并充分利用它们各自的优势,实现了神经网络控制系统(NN CS )的计算机仿真。具体仿真实例表明,M A TLAB 是进行人工神经网络计算机仿真的有效工具。

关键词:神经网络;BP 网;M A TLAB ;Si m ulink ;系统仿真中图分类号:T P 391.9 文献标识码:B

1 引言

控制系统的模拟和仿真是进行科学研究的重要手段。近年来,几乎所有控制系统的高品质控制均离不开系统仿真研究。通过仿真研究可以对照比较各种控制方案,优化并确定相关控制参量。一般来说,对控制系统进行计算机仿真首先应建立系统模型,然后依据模型编制仿真程序,充分利用计算机对其进行动态模拟并显示结果。

对于一个闭环控制系统,我们的控制目标是它的输出曲线是一条从0开始,无限接近于给定值,且超调量极小的上升曲线,这主要是由控制器的输出决定的。在输入偏差不断变化的情况下,设计什么样的控制器才能达到所需的控制精度和要求呢?

在本文中,我们将B P 算法引入控制策略,并建立一个B P 网络模型,利用M A TLAB 中的神经网络工具箱对其进行学习和训练,根据训练出的参量构造一网络控制器,并在Si m u link 环境下组成闭环控制系统,进行系统仿真和动态模拟,观察其品质。

2 BP 网络分析及模型建立

B P 网络是目前应用最广泛的神经网络模型。它的学习规则就是通过反向传播(B P )来调整网络的权值和阈值使网络误差的平方和最小,这是通过在最速下降方向上不断调整网络的权值和阈值来实现的。B P 网络具有强大的非线性映射能力

和泛化功能,任一连续函数或映射均可采用三层

网络加以实现。这样,把它作为控制器就找到了很好的答案。

控制器用前馈网络一般为m 2n 21结构,该网络输入层有m 个神经元,隐层有n 个神经元,而输出层只有一个神经元。研究表明,网络的输出实质是一系列权值、阈值和输入的线性组合,当隐层函数具有任意阶非常数导数时,该网络可以逼近任意连续函数。我们构造一32521网络,隐层节点取5个,输入节点取3个,其输入参量是三偏差,采用递推方式取e (i )、e (i -1)、e (i -2)。

本网络中的隐层变换函数取tan sig 函数,它可以将神经元的输入范围(-∞,+∞)映射到(-1,+1),它是可微函数,非常适于利用B P 训练的神经元。如果B P 网络的最后一层是sigmo id 型神经元,那么整个网络的输出就限制在一个较小的范围内;如果是pu relin 型线性神经元,则整个网络的输出可以是任意值,所以取pu relin 型函数作为输出层的变换函数。网络结构如图1所示。3 基于神经网络工具箱的BP 网络学习和训

M A TLAB 作为国际公认最优秀的数学应用软件,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,它相继推出的工具箱为各领域的研究提供了有力的工具,借助于它们,我们可以直观、方便

?

43?控制系统

Ξ

收稿日期:2000207228(磁盘稿)

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值