抛物线中四边形面积最大值_函数动点与四边形面积最大值

本文详细分析了如何利用对称性质求解抛物线解析式,探讨了学生在处理这类问题时可能遇到的难点,并提出了解题思路。通过设定抛物线的顶点式并代入点坐标,得出函数解析式。同时,文章阐述了如何通过等腰三角形性质寻找特殊点,以及在动态变化的四边形中分类讨论求解问题的方法,强调了数形结合与特殊到一般的思想在数学问题解决中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【思路分析】

(1)根据已知条件中,当自变量x=-1和x=5时,函数值是相等的可以求出抛物线的对称轴为x=2,再把对称轴方程和直线l的方程联立,可以求得抛物线的顶点坐标,由此我们可以设出抛物线的顶点式,然后代入点(3,-4),只要细心运算就可以求出抛物线的解析式;但是部分同学可能无法理解“当自变量x=-1和x=5时,函数值是相等”发现隐藏的对称轴,导致思维停顿,或陷于复杂的运算当中,说明对抛物线的图像与性质还不能够灵活运用;

(2)先求出抛物线与y轴交点C的坐标,然后从特殊的情况开始研究。当角PCO和角ACO相等的时候,求出相应的点P的坐标。过点A作关于y轴的对称点A’,连接CA’交抛物线于点P,则可以知道三角形ACA’是一个等腰的三角形,通过联立方程组可以得到交点P的坐标。接着观察图形,得到结论,但是要特别注意角PCO是一个锐角。我们研究数学问题往往都是从特殊到一般的过程,选择从特殊的点入手,数形结合,用相等解决不等的问题;

(3)先求出直线l与抛物线另一个交点B的坐标,点Q(t,n)为线段BM上一个动点(点Q不与M重合),所以可以求出参数t的取值范围是-1≤t<2。通过草图分析,发现以Q、H、O、C四个点为顶点的四边形形状是不断变化的,这里需要分三种情况讨论。第一种情况是-1≤t<0时,第二种情况是t大于0而小于三分之四,第三种情况是t大于三分之四而小于2,然后进一步计算求得答案。

(4)本题考查待定系数法求抛物线解析式,等腰三角形的性质和判定、二次函数图像与性质等相关知识,难度在于题目的分析草图要自己动手画,图形动态变化的过程不好观察,还需要局部放大,进行合理的想象,从而明确分类讨论的标准。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值