数据流的中位数

题目:

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如,

[2,3,4] 的中位数是 3

[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。

在这里插入图片描述
解析:

思路:巧用堆的性质
在这里插入图片描述
添加元素时的堆调整:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
获取中位数 :
在这里插入图片描述
代码:

class MedianFinder {
    private PriorityQueue<Integer> large;  //最大堆
    private PriorityQueue<Integer> small;   //
    
    /** initialize your data structure here. */
    public MedianFinder() {
        // 小顶堆
        large = new PriorityQueue<>();
        // 大顶堆
        small = new PriorityQueue<>((a, b) -> {
            return b - a;
        });
    }
    
    public void addNum(int num) {
//不仅要维护 最大堆 和 最小堆 的元素个数之差不超过 1,还要维护 最大堆 的堆顶元素
//要小于等于 最小堆 的堆顶元素。下面的代码设定了最大堆的元素个数时会始终超最小堆元素1 或者 相等元素个数。
      if (small.size() >= large.size()) {
        small.offer(num);
        large.offer(small.poll());
    } else {
        large.offer(num);
        small.offer(large.poll());
    }
    }
    
    public double findMedian() {

        // 如果元素不一样多,多的那个堆的堆顶元素就是中位数
        if (large.size() < small.size()) {
            return small.peek();
        } else if (large.size() > small.size()) {
            return large.peek();
        }
        // 如果元素一样多,两个堆堆顶元素的平均数是中位数
        return (large.peek() + small.peek()) / 2.0;

    }
}

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder obj = new MedianFinder();
 * obj.addNum(num);
 * double param_2 = obj.findMedian();
 */

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-median-from-data-stream
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页