从前序与中序遍历序列构造二叉树

题目
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:你可以假设树中没有重复的元素。

示例

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
    3
   / \
  9  20
    /  \
   15   7

节点构造如下

struct TreeNode {
     int val;
     TreeNode *left;
     TreeNode *right;
     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 };

思路
前序遍历的顺序是根左右,中序遍历的顺序是左根右。所以前序遍历的第一个节点肯定是根节点,再找到根节点在中序遍历中的位置,以该位置为界限,该位置左边的所有节点必定是根节点的左子树,该位置右边的所有节点必定是根节点的右子树。所以此时确定了树的根节点和它的左右子树,再重复上述步骤找到左右子树的根节点。直至所有节点都确定位置。

 TreeNode *buildDFSTree(vector<int> &preorder,int prel, int preh, vector<int> &inorder, int inl, int inh)
    {
        //前序遍历的第一个节点是当前树的根节点
        //创建根节点
        TreeNode *root = new TreeNode(preorder[prel]);
        int i, leftn, rightn;
       	//找到根节点在中序遍历中的位置
        for(i = 0; inorder[i] != preorder[prel]; i++);
        //左子树节点个数
        leftn = i - inl;
        //右子树节点个数
        rightn = inh - i;
        //递归构建左子树
        //根节点的左子节点是其左子树的根节点
        if(leftn > 0)   
        	root->left = buildDFSTree(preorder,prel+1,prel+leftn,inorder,inl,i-1);
        //递归构建右子树
        //根节点的右子节点是其右子树的根节点
        if(rightn > 0)  
        	root->right = buildDFSTree(preorder,prel+leftn+1,inh,inorder,i+1,inh);
        return root;
    }


TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        TreeNode *root = NULL;
        if(preorder.size() > 0)
            root = buildDFSTree(preorder,0, preorder.size()-1, inorder,0, inorder.size()-1);
        return root;
    }
发布了18 篇原创文章 · 获赞 0 · 访问量 111
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览