从中序与后序遍历序列构造二叉树

题目
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:你可以假设树中没有重复的元素。

示例

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]

返回如下的二叉树:
    3
   / \
  9  20
    /  \
   15   7

节点构造

struct TreeNode {
     int val;
     TreeNode *left;
     TreeNode *right;
     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 };

思路
中序遍历的顺序是左根右,后序遍历的顺序是左右根。所以后序遍历的最后一个节点肯定是根节点,找到根节点在中序遍历中的位置,以此位置为界,该位置的所有左边节点必定构成根节点的左子树,该位置的所有右边节点必定构成根节点的右子树。再重复上述步骤,确定左右子树的根节点,不断划分下去直至所有节点都确定位置。

 TreeNode *buildDFSTree(vector<int> &inorder,int inl, int inh, vector<int> &postorder, int postl, int posth)
    {
        //后序遍历的第一个节点是当前树的根节点
        TreeNode *root = new TreeNode(postorder[posth]);
        int i, leftn, rightn;
        //找到根节点在中序遍历中的位置
        for(i = inl; inorder[i] != postorder[posth]; i++);
        //左子树节点个数
        leftn = i - inl;
        //右子树节点个数
        rightn = inh - i;
        //递归构建左子树
        if(leftn > 0)   root->left = buildDFSTree(inorder,inl,i-1,postorder,postl,postl+leftn-1);
        //递归构建右子树
        if(rightn > 0)  root->right = buildDFSTree(inorder,i+1,inh,postorder,postl+leftn,posth-1);
        return root;
    }


TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        TreeNode *root = NULL;
        if(inorder.size() > 0)
            root = buildDFSTree(inorder,0,inorder.size()-1,postorder,0,postorder.size()-1);
        return root;
    }
发布了19 篇原创文章 · 获赞 0 · 访问量 124
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览