分数化简_比的化简教学设计

【学习目标】 1. 在实际情境中,体会化简比的必要性,进一步体会比的意义。 2 .会运用商不变的规律和分数基本性质化简比,并能解决相应的简单实际问题。 【教学重点】 会运用比的基本性质化简比。 【教学难点】 根据比的基本性质解决生活中的实际问题。 【教学过程】 一、情境导入   奇思和妙想每人调制了一杯蜂蜜水,(出示信息)它们谁调制的蜂蜜水甜呢?怎样用数学的方法判断,你有什么好办法? ( 要想知道哪杯水更甜, 你想到了写出蜂蜜与水的比 ,根据每杯蜂蜜水中蜂蜜与水的比来判断哪杯蜂蜜水更甜。 ) 二、新课探究 1 .体会化简比的必要性

b6e5ff704c2691bb3e7e008d5eca5be5.png

师:这样还是看不出来。 (预设)

07b3ba761c35ab308e0e3fb18b26cf12.png

师:这样我们就知道了,奇思和妙想调制的蜂蜜水都是 1 杯蜂蜜用了 4 杯水,也就是蜂蜜和水的比都是 1:4 。 2 .揭示课题,发现比的基本性质 ① 师:像这样,把 3:12 和 4:16 都化为 1:4 这个过程就叫做化简比。(板书:比的化简)化简比可以使比更简单 , 容易比较。 ②请同学们仔细观察,在化简的过程中,比的前项和后项是如何变化的? (预设)3:12化简成1:4,前项和后项同时除以3,4:16化简成1:4前项和后项同时除以4。从右往左看,前项和后项分别同时乘3、乘4。 ③师:像这样,你还能写出一组相等的比吗? 生独立完成,板演汇报 师:同学们给比的前项和后项同时乘或除以一个相同的数,比值的大小不变。这个数可以是任何数吗?(0除外)这和我们以前学过的商不变的性质、分数的基本性质 一样。比的基本性质是化简比的依据。 3. 最简整数比   ① 约分时要把分数约成最简分数,(最简分数指什么?)那化简比要把比化简到什么程度?(最简整数比) ② 你是怎么理解最简整数比的?(比的前项和后项都是整数且最大公因数为 1 )   ③判断下列比是不是最简整数比,并说说理由。

c1bb0231a7b377cea1424c603ebe4bdf.png

3 .化简比的方法

7c9d893919bebd5334f021fbd7c11903.png 

请同学们试着化简这三个比。 (独立完成,板演汇报) 方法总结: ①先把整数比写成分数的形式,再进行约分。 ②用比的前项除以比的后项,把最后的结果写成最简整数比的形式。 ③先把小数比写成除法算式,根据商不变的性质,化成整数比后再化简。 4 .化简比和求比值有什么区别 方法相同。化简比的结果可以写成比的形式,也可以写成分数;求比值的结果是一个数(整数、小数、分数)。 小结:通过今天的学习,我们知道了可以根据比的基本性质把比化简为最简整数比,我们也知道了化简比的几种方法,根据实际情况我们可以灵活应用。 三、巩固练习。 1. 精挑细选。 (1)0.75:0.1化简后的最简整数比是(    ) A 、7.5:1   B、75:10     C、15:2 (2)比的前项是8,比的后项是2,比值是(    ) A 、4:1     B、4      C、1:4 2. 判断,下面的化简比对吗? ⑴ 45:30=9:6      (    ) ⑵ 42:24=21:8     (    ) 3. 化简下面各比

432b8bb3a0e7bcb6290696e66e7fa8ce.png

4. 小丽的身高是1m,她妈妈的身高是160cm,小丽说她和妈妈的身高的比是1:160,对不对? 四、全课小结

d07844eb8bb20da8cf48d5e778994479.png

张婧: 任教于宝鸡市金台区西街小学,省级教学能手,区级师德标兵、优秀教师。从事数学教学工作十余年,课 例《 数学好玩—绘制校园平面图》被评为2016-2017年度“一师一优课、一课一名师”活动部级“优课” ,在金台区第一届小学教师基本功(技能)大赛中获二等奖,在区级小学数学期中命题比赛中获一等奖;多次承担市、区级送教下乡活动。 教学理念: 爱是最好的教育,而表达爱的最好的方法是欢喜、鼓励和赞赏。

8dd01feafe39e07cf0f8a0e947607c9d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值