基于深度学习的近红外掌纹识别原型系统设计与实现
一、绪论
二、深度学习知识
三、Tensorflow
四、卷积神经网络
五、掌纹识别理论
- 掌纹图像采集
- 掌纹图像预处理
- 掌纹特征提取
- 掌纹特征匹配
- 掌纹识别
六、总结
在B站视频学习
深度学习之神经网络算法(CNN RNN GAN原理入门+实战)
Tensorflow2.0入门到进阶
卷积神经网络—>卷积层 池化层 全连接层
掌纹识别系统
主要包括掌纹图像采集、 掌纹图像预处理、特征提取、特征匹配等几个部分
-
掌纹图像收集
-
掌纹图像预处理方法—>ROI区域 DA
https://blog.csdn.net/cmen/article/details/7708477
预处理方法主要包括二值化、边界跟踪和关键点定位等步骤 -
掌纹特征提取方法AlexNet(5层卷积+3层全连接)
模型过拟合问题
https://blog.csdn.net/csdn_muxin/article/details/81289933
Dropout随机失活
https://blog.csdn.net/sinat_29957455/article/details/81023154 -
基于CNN的掌纹分类方法
掌纹分类识别方法Softmax
常用到的分类决策算法包括:最近邻分类算法(KNN, K-Nearest Neighbor)、支持向量机分类算法(SVM,Support Vector Machine) Softmax 分类算法等
卷积神经网络
特征提取方法8种
- 纹理结构融合统计信息的特征提取
- 多维子空间掌纹特征提取
- 转换编码掌纹特征提取
- 基于特征融合的掌纹特征提取
1 基于结构的特征提取
2 基于统计的特征提取
3 基于子空间的特征提取
4 基于时频分析的特征提取
5 基于编码的特征提取
6 基于模板的特征提取
7 基于光谱的特征提取