基于深度学习的近红外掌纹识别原型系统设计与实现

本文介绍了一种基于深度学习的近红外掌纹识别原型系统,涵盖了深度学习基础知识、TensorFlow使用、卷积神经网络原理以及掌纹识别的各个环节,包括图像采集、预处理、特征提取和匹配。利用AlexNet进行特征提取,并讨论了防止过拟合的方法如Dropout。最后,探讨了多种特征提取方法,并提到了Softmax分类在掌纹识别中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习的近红外掌纹识别原型系统设计与实现

一、绪论
二、深度学习知识
三、Tensorflow
四、卷积神经网络
五、掌纹识别理论

  1. 掌纹图像采集
  2. 掌纹图像预处理
  3. 掌纹特征提取
  4. 掌纹特征匹配
  5. 掌纹识别
    六、总结

在B站视频学习
深度学习之神经网络算法(CNN RNN GAN原理入门+实战)
Tensorflow2.0入门到进阶

卷积神经网络—>卷积层 池化层 全连接层

掌纹识别系统

主要包括掌纹图像采集、 掌纹图像预处理、特征提取、特征匹配等几个部分

  1. 掌纹图像收集

  2. 掌纹图像预处理方法—>ROI区域 DA
    https://blog.csdn.net/cmen/article/details/7708477
    预处理方法主要包括二值化、边界跟踪和关键点定位等步骤

  3. 掌纹特征提取方法AlexNet(5层卷积+3层全连接)
    模型过拟合问题
    https://blog.csdn.net/csdn_muxin/article/details/81289933
    Dropout随机失活
    https://blog.csdn.net/sinat_29957455/article/details/81023154

  4. 基于CNN的掌纹分类方法
    掌纹分类识别方法Softmax
    常用到的分类决策算法包括:最近邻分类算法(KNN, K-Nearest Neighbor)、支持向量机分类算法(SVM,Support Vector Machine) Softmax 分类算法等

卷积神经网络

特征提取方法8种

  1. 纹理结构融合统计信息的特征提取
  2. 多维子空间掌纹特征提取
  3. 转换编码掌纹特征提取
  4. 基于特征融合的掌纹特征提取

1 基于结构的特征提取
2 基于统计的特征提取
3 基于子空间的特征提取
4 基于时频分析的特征提取
5 基于编码的特征提取
6 基于模板的特征提取
7 基于光谱的特征提取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值