YOLOv8首发优化:增量调优方法 | 一种名为多认知视觉适配器(Mona)调优的新型基于适配器的优调方法,CVPR2025

 💡💡💡问题点:最近的增量调优方法为视觉分类任务提供了更多选择。 尽管取得了成功,但现有的视觉增量调优仍无法在目标检测和分割等具有挑战性的任务上突破全面微调的上限?

💡💡💡解决方案:我们提出了一种名为多认知视觉适配器(Mona)调优的新型基于适配器的优调方法。首先,我们将多个视觉友好的滤波器引入适配器,以增强其处理视觉信号的能力,而以往的方法主要依赖于语言友好的线性滤波器。

💡💡💡如何与YOLOv8结合:1)C2f与Mona结合;

💡💡💡多个数据集上实现暴力涨点; 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值