💡💡💡问题点:最近的增量调优方法为视觉分类任务提供了更多选择。 尽管取得了成功,但现有的视觉增量调优仍无法在目标检测和分割等具有挑战性的任务上突破全面微调的上限?
💡💡💡解决方案:我们提出了一种名为多认知视觉适配器(Mona)调优的新型基于适配器的优调方法。首先,我们将多个视觉友好的滤波器引入适配器,以增强其处理视觉信号的能力,而以往的方法主要依赖于语言友好的线性滤波器。
💡💡💡如何与YOLOv8结合:1)C2f与Mona结合;
💡💡💡多个数据集上实现暴力涨点;
💡💡💡问题点:最近的增量调优方法为视觉分类任务提供了更多选择。 尽管取得了成功,但现有的视觉增量调优仍无法在目标检测和分割等具有挑战性的任务上突破全面微调的上限?
💡💡💡解决方案:我们提出了一种名为多认知视觉适配器(Mona)调优的新型基于适配器的优调方法。首先,我们将多个视觉友好的滤波器引入适配器,以增强其处理视觉信号的能力,而以往的方法主要依赖于语言友好的线性滤波器。
💡💡💡如何与YOLOv8结合:1)C2f与Mona结合;
💡💡💡多个数据集上实现暴力涨点;