四色定理(four color map theorem)是一个著名的数学定理[1],即对任意的(平面上的)地图染色,要求相邻的国家颜色不同,四种颜色即可完成着色。
南非数学家法兰西斯·古德里在1852年提出“四色问题”或“四色猜想”。证明宽松一点的“五色定理”(即“只用五种颜色就能为所有地图染色”)很容易,但是四色定理证明持续了很长时间。
四色定理不是地图学的定理,四色定理是第一个由计算机证明的数学定理。1976年,哈肯及其学生在伊利诺伊大学(即现在UIUC)的IBM360电脑上编程,经过电脑1200小时的验证,他们终于在6月证明四色定理。1976年6月22日,哈肯和阿佩尔在于多伦多大学召开的美国数学学会(A.M.S.)夏季会议公布他们的结果。不久,伊利诺伊大学数学系的邮戳上加上了“四种颜色就够了”(FOUR COLORS SUFFICE)的一句话,以庆祝四色猜想得到解决。1977年,哈肯和阿佩尔将结果写成名为《任何平面地图都能用四种颜色染色》(Every planar map is four colorable)的论文,分成上下两部分,发表在《伊利诺伊数学杂志》(Illinois Journal of Mathematics)上[2][3].

图1 四色定理的证明&#x