java 地图四色着色算法_趣味地图系列之6 四色定理之我见

四色定理是数学中的一个著名定理,1976年由哈肯和阿佩尔借助计算机证明。尽管在理论上四色足以着色任何平面地图,但在实际地图设计中由于飞地等因素,往往使用更多颜色。本文回顾了四色定理的历史、证明过程,并提及在GIS领域的应用,推荐了相关算法资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四色定理(four color map theorem)是一个著名的数学定理[1],即对任意的(平面上的)地图染色,要求相邻的国家颜色不同,四种颜色即可完成着色。

南非数学家法兰西斯·古德里在1852年提出“四色问题”或“四色猜想”。证明宽松一点的“五色定理”(即“只用五种颜色就能为所有地图染色”)很容易,但是四色定理证明持续了很长时间。

四色定理不是地图学的定理,四色定理是第一个由计算机证明的数学定理。1976年,哈肯及其学生在伊利诺伊大学(即现在UIUC)的IBM360电脑上编程,经过电脑1200小时的验证,他们终于在6月证明四色定理。1976年6月22日,哈肯和阿佩尔在于多伦多大学召开的美国数学学会(A.M.S.)夏季会议公布他们的结果。不久,伊利诺伊大学数学系的邮戳上加上了“四种颜色就够了”(FOUR COLORS SUFFICE)的一句话,以庆祝四色猜想得到解决。1977年,哈肯和阿佩尔将结果写成名为《任何平面地图都能用四种颜色染色》(Every planar map is four colorable)的论文,分成上下两部分,发表在《伊利诺伊数学杂志》(Illinois Journal of Mathematics)上[2][3].

8083694d927faed8496d45024a319b14.png

图1 四色定理的证明&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值