深度学习
Ginkgo__
怕什么真理无穷,进一寸有进一寸的欢喜。
展开
-
pytorch:fine-tune 预训练模型
如何 fine-tune以 resnet18 为例:from torchvision import modelsfrom torch import nnfrom torch import optimresnet_model = models.resnet18(pretrained=True) # pretrained 设置为 True,会自动下载模型 所对应权重,并加载到...转载 2019-11-03 12:19:04 · 1057 阅读 · 0 评论 -
深度学习知识点整理(更新中)
1.反向传播会用到前向传播时计算的值,以及cost的公式;但不会用到cost值,cost值只是用来评估当前网络是否收敛。2.如何实现从全链接层(n)映射到softmax层(k)?需要在最后将 3D 输出展平为 1D,然后在上面添加几个 Dense 层。model.add(layers.Flatten())model.add(layers.Dense(64, activation='...原创 2018-09-07 15:49:40 · 681 阅读 · 0 评论 -
反向传播解析
对于单个样本计算一次梯度: 在逻辑回归中,我们要做的就是修改参数w和b,来减少损失函数。因为我们要计算关于损失函数的导数,反向传播时,首先计算损失函数对于da的导数。 ...原创 2018-09-07 17:08:23 · 1190 阅读 · 0 评论 -
超级简单的神经网络——训练数据分类(python语言)
需要kddtrain2018.txt和kddtest2018.txt的盆友,请下载我上传的资源:神经网络训练数据分类_kdd 内容:根据给定数据集创建分类器。训练数据集(kddtrain2018.txt):100 predictive attributes A1,A2,...,A100和一个类标C,每一个属性是介于0~1之间的浮点数,类标C有三个可能的{0,1,2},给定的数据文件有10...原创 2018-12-24 10:39:07 · 9893 阅读 · 8 评论 -
Pytorch入门——用UNet网络做图像分割
最近看的paper里的pytorch代码太复杂,我之前也没接触过pytorch,遂决定先自己实现一个基础的裸代码,这样走一遍,对跑网络的基本流程和一些常用的基础函数的印象会更深刻。本文的代码和数据主要来自https://blog.csdn.net/jiangpeng59/article/details/80189889,附上该博主的github地址:https://github.com/J...原创 2019-05-13 19:02:05 · 31294 阅读 · 93 评论 -
ResNet34学习笔记+用pytorch手写实现
看懂ResNet,需要理解两个点:shortcut的处理,以及网络结构理解1——Identity Mapping by Shortcuts(快捷恒等映射)我们每隔几个堆叠层采用残差学习。构建块如图2所示。在本文中我们考虑构建块正式定义为x和y是考虑的层的输入和输出向量。函数F(x,Wi)表示要学习的残差映射。图2中的例子有两层,F=W2σ(W1x)中σ表示ReLU[29],为了...原创 2019-05-21 09:13:59 · 21948 阅读 · 12 评论 -
pytorch学习笔记
关于python中带下划线的变量和函数 Conv2d、Conv3d区别pytorch官方文档说明:Conv2d一般是二维平面图像处理。默认处理的输入输出的shape是四维:batch size、通道数(RGB-3通道或者灰度-1通道)、图像高度、图像宽度。用法是:nn.Conv2d(1,64,3) #1表示输入的通道数,64表示输出的通道数,3表示卷积核为3x3...原创 2019-05-07 18:44:17 · 491 阅读 · 0 评论 -
Pytorch——谜之bug汇总
运行别人的代码的时候报错:RuntimeError: CUDA out of memory. Tried to allocate 512.00 MiB (GPU 0; 11.90 GiB total capacity; 11.15 GiB already allocated; 46.94 MiB free; 241.57 MiB cached)但是nvidia-smi查看显卡,显存充足 ...原创 2019-05-11 16:12:41 · 1763 阅读 · 0 评论 -
手写IoU
IoU(Intersection over Union)矩形框的IoU计算: 矩阵T的左下角坐标,右上角坐标;矩阵G的左下角坐标,右上角坐标;在确定坐标的情况下,与是可知的常量,所以,我们只需要求解即可。这里我们先来看一下水平方向上的情况:从上述的三种情况中我们可以看出:当有重叠或者是内含的情况时,我们可以通过计算得到重叠部分的长度....原创 2019-09-19 16:52:52 · 1229 阅读 · 0 评论