moviepy将图片序列制作成视频并加载字幕 - python 实现

-----------------------------------------------------------------------------------------

具体代码实现如下:

import os
from moviepy.editor import ImageSequenceClip,VideoFileClip,TextClip,CompositeVideoClip

path_ = "imgs/"

# 设置每秒帧数
fps = 30
# 每张图片的持续时间列表
durations = []
# 图片文件列表
image_files = []
for f_ in os.listdir(path_):
    print(f_)
    image_files.append(path_ + f_)
    durations.append(2) # 一个视频停留 2 秒

# 创建视频剪辑对象,设置每张图片的持续时间
clip = ImageSequenceClip(image_files, durations=durations)

# 输出视频文件
clip.write_videofile("output_video.mp4", codec="libx264",fps=fps)

# 打上字幕
video = VideoFileClip("output_video.mp4")  # 替换为你的视频文件路径
# 获取视频时长(单位:秒)
duration = video.duration
# 获取视频宽度
video_width = video.w
text = "DataBall - X "
print("{}".format(text))
txt_clip = TextClip(text, fontsize=120, color='blue', font="Arial-Bold",size=(video_width, None),method="caption")
txt_clip = txt_clip.set_position('bottom').set_duration(duration)
txt_clip = txt_clip.set_start(0)

final_video = CompositeVideoClip([video, *[txt_clip]])

# 输出字幕合成视频文件
final_video.write_videofile("output_video2.mp4", codec="libx264", audio_codec="aac")

示例如下:

 ​​​​​

助力快速掌握数据集的信息和使用方式。

数据可以如此美好!

### 回答1: 要用Python实现视频字幕提取,需要用到一些第三方库。以下是一种使用PythonFFmpegpytesseract的方法: 1.安装FFmpegpytesseract 首先需要安装FFmpegpytesseract。在Windows上,可以从官方网站下载FFmpeg二进制文件将其添到PATH环境变量中。要安装pytesseract,可以使用pip: ``` pip install pytesseract ``` 2.导入所需库 在Python中,需要导入一些库以便进行视频字幕提取。这些库包括cv2、pytesseract、numpysubprocess。您可以使用以下代码导入这些库: ```python import cv2 import pytesseract import numpy as np import subprocess ``` 3.提取视频帧 使用OpenCV(cv2库)加载视频文件读取每个帧。可以使用以下代码: ```python vidcap = cv2.VideoCapture('video.mp4') success,image = vidcap.read() count = 0 while success: cv2.imwrite("frame%d.jpg" % count, image) # save frame as JPEG file success,image = vidcap.read() count += 1 ``` 上面的代码将读取名为“video.mp4”的视频文件,将其帧保存为图像文件。将其保存到当前目录下,以图像序列的形式命名为“frame0.jpg”、“frame1.jpg”等。 4.使用pytesseract提取字幕 使用pytesseract库从每个帧中提取字幕。可以使用以下代码: ```python for i in range(count): img = cv2.imread('frame%d.jpg' % i) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret,thresh1 = cv2.threshold(gray,200,255,cv2.THRESH_BINARY) kernel = np.ones((1,1),np.uint8) img = cv2.dilate(thresh1,kernel,iterations = 1) img = cv2.erode(img,kernel,iterations = 1) out_below = pytesseract.image_to_string(img) print("frame ", i, " : \n") print(out_below) ``` 上面的代码将循环每个帧,将其加载图像,将其转换为灰度图像,二值化处理,扩张腐蚀处理以增强文本。然后,它使用pytesseract将文本从帧中提取出来,将其打印到控制台中。 5.删除生成图像文件 最后,需要删除生成图像文件。可以使用以下代码: ```python for i in range(count): file = "frame%d.jpg" % i subprocess.run(['rm', file]) ``` 上面的代码将循环每个帧文件,使用subprocess库中的rm命令删除它们。 总结 通过上述步骤,我们可以使用Python第三方库实现视频字幕提取。您可以使用其他方法来进一步优化提取文本的过程,例如改变字幕区域的大小位置,使用不同的图像处理技术等。 ### 回答2: 要实现视频字幕提取,可以使用Python中的一些库工具来完。以下是一种实现方法: 1. 安装所需库:使用Python的pip命令安装所需库,包括OpenCV、pytesseractPillow。 2. 导入所需库:在Python脚本中导入所需的库模块。 3. 读取视频文件:使用OpenCV库的VideoCapture函数读取视频文件。可以使用视频的文件路径作为参数,返回一个视频对象。 4. 视频处理:在循环中,逐帧读取视频,对每一帧进行处理。 5. 图像处理:将每一帧转换为灰度图像,以便于后续的文字提取识别。 6. 提取字幕:使用pytesseract库的image_to_string函数将图像转换为文字。可以设置适当的参数,例如语言字符集,以获取更好的结果。 7. 文字处理:对提取的文字进行必要的处理,例如去除空格、标点其他噪音。可以使用Python的字符串操作正则表达式来完。 8. 字幕保存:将处理后的字幕保存到文件中,以便后续使用或分析。 9. 释放资源:在处理完后,记得释放所有资源,包括关闭视频对象清理内存。 10. 运行脚本:使用Python解释器运行脚本,观察输出保存的字幕文件。 请注意,实际实现中可能会遇到一些挑战问题,例如视频压缩格式、字幕样式位置的变化等。因此,根据具体情况需求进行适当的调整优化。 ### 回答3: 要使用Python实现视频字幕提取,可以按照以下步骤进行操作: 1. 导入所需的库:安装导入`moviepy`库,这是一个处理视频的强大库。 2. 加载视频文件:使用`VideoFileClip`函数加载视频文件,例如`video = VideoFileClip("video.mp4")`。 3. 提取视频中的音频:使用`audio = video.audio`提取视频的音频部分。 4. 将音频转换为文字:使用语音转文本的API,如百度云、腾讯云或Google Cloud API,将音频转换为文字。调用相应的API,传入音频文件,获得文字结果。例如,使用百度云API:`result = baidu_api.audio_to_text(audio)`。 5. 处理文字结果:根据API返回的结果,可以对文字进行处理清洗。例如删除标点符号、过滤无关的字幕等。 6. 输出字幕:将处理后的文字结果保存为字幕文件,如SRT格式或VTT格式。可以使用库如`pysrt`或`webvtt-py`来生成字幕文件。 7. 完整代码示例: ```python from moviepy.editor import VideoFileClip import baidu_api # 假设有一个baidu_api.py文件,包含了百度云API的调用函数 # 加载视频文件 video = VideoFileClip("video.mp4") # 提取音频 audio = video.audio # 将音频转换为文字 result = baidu_api.audio_to_text(audio) # 处理文字结果 processed_text = text_processing(result) # 输出字幕文件 output_subtitles(processed_text) ``` 请注意,在实际操作中,你需要有一个有效的语音转文本的API,将其与Python代码结合使用,以完音频到文字的转换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值