题目题解均来自leetCode
95. 不同的二叉搜索树
给定一个整数 n,生成所有由 1 ... n 为节点所组成的 二叉搜索树 。
解法一:递归法
所以如果求 1...n 的所有可能。
我们只需要把 1 作为根节点,[ ] 空作为左子树,[ 2 ... n ] 的所有可能作为右子树。
2 作为根节点,[ 1 ] 作为左子树,[ 3...n ] 的所有可能作为右子树。
...
n 作为根节点,[ 1... n ] 的所有可能作为左子树,[ ] 作为右子树。
至于,[ 2 ... n ] 的所有可能以及 [ 4 ... n ] 以及其他情况的所有可能,可以利用上边的方法,把每个数字作为根节点,然后把所有可能的左子树和右子树组合起来即可。
如果只有一个数字,那么所有可能就是一种情况,把该数字作为一棵树。而如果是 [ ],那就返回 null。
public List<TreeNode> generateTrees(int n) {
List<TreeNode> ans = new ArrayList<TreeNode>();
if (n == 0) {
return ans;
}
return getAns(1, n);
}
private List<TreeNode> getAns(int start, int end) {
List<TreeNode> ans = new ArrayList<TreeNode>();
//此时没有数字,将 null 加入结果中
if (start > end) {
ans.add(null);
return ans;
}
//只有一个数字,当前数字作为一棵树加入结果中
if (start == end) {
TreeNode tree = new TreeNode(start);
ans.add(tree);
return ans;
}
//尝试每个数字作为根节点
for (int i = start; i <= end; i++) {
//得到所有可能的左子树
List<TreeNode> leftTrees = getAns(start, i - 1);
//得到所有可能的右子树
List<TreeNode> rightTrees = getAns(i + 1, end);
//左子树右子树两两组合
for (TreeNode leftTree : leftTrees) {
for (TreeNode rightTree : rightTrees) {
TreeNode root = new TreeNode(i);
root.left = leftTree;
root.right = rightTree;
//加入到最终结果中
ans.add(root);
}
}
}
return ans;
}
94. 二叉树的中序遍历
在树的深度优先遍历中(包括前序、中序、后序遍历),递归方法最为直观易懂,但考虑到效率,我们通常不推荐使用递归。
栈迭代方法虽然提高了效率,但其嵌套循环却非常烧脑,不易理解,容易造成“一看就懂,一写就废”的窘况。而且对于不同的遍历顺序(前序、中序、后序),循环结构差异很大,更增加了记忆负担。
因此,我在这里介绍一种“颜色标记法”(瞎起的名字……),兼具栈迭代方法的高效,又像递归方法一样简洁易懂,更重要的是,这种方法对于前序、中序、后序遍历,能够写出完全一致的代码。
其核心思想如下:
使用颜色标记节点的状态,新节点为白色,已访问的节点为灰色。
如果遇到的节点为白色,则将其标记为灰色,然后将其右子节点、自身、左子节点依次入栈。
如果遇到的节点为灰色,则将节点的值输出。
使用这种方法实现的中序遍历如下:
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
WHITE, GRAY = 0, 1
res = []
stack = [(WHITE, root)]
while stack:
color, node = stack.pop()
if node is None: continue
if color == WHITE:
stack.append((WHITE, node.right))
stack.append((GRAY, node))
stack.append((WHITE, node.left))
else:
res.append(node.val)
return res