稳健性估计—— M 估计

本文介绍了M估计法用于估计均值和标准差的原理与过程。在估计均值时,通过求解特定方程并采用牛顿法迭代,最终得到估计值。对于小样本,M估计法利用MADe(中位绝对偏差的调整值)进行计算。同样,M估计法也用于估计标准差,通过特定函数和迭代方法求解。举例展示了使用M估计法计算8个正态分布数据点的均值和标准差,结果显示其准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文主要介绍了 ISO 13528 的附件 D 的条款 D.1.4.2 中的 NOTE 3 的 p ≥ 4 p\geq 4 p4 中提及的 M 估计,参考文献为: ROUSSEEUW P.J & VERBOVEN S.Comput. Stat. Data Anal. 2002, 40 pp. 741-758

M 估计法,估计均值

M 估计法算均值的原理在于求解下述方程:
ave [ f ( x i − T n S n ) ] = 0 \text{ave}[ f(\frac{x_i-T_n}{S_n})] = 0 ave[f(SnxiTn)]=0
其中 T n T_n Tn 是对均值的估计值(方程的解即为 M 算法估计均值的结果), S n S_n Sn 为对方差平方根(标准差)的估计。

对于小样本来说( n ∈ [ 4 , 8 ] n\in[4, 8] n[4,8]), S n S_n Sn 取 MADe,即:
MADe ( X ) = 1.4826 × med n ( ∣ x i − med n ( X ) ∣ ) \text{MADe}(X) = 1.4826 \times \text{med}_n (|x_i - \text{med}_n(X)|) MADe(X)=1.4826×medn(xi

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhuo木鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值