
时序图
文章平均质量分 93
年年年年年
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TGAT:INDUCTIVE REPRESENTATION LEARNING ON TEMPORAL GRAPHS 论文笔记
INDUCTIVE REPRESENTATION LEARNING ON TEMPORAL GRAPHS摘要简介TGAT框架Time Encoding函数时序图注意力层(TGAT layer)如果边上有不同的特征实验实验设置Loss Function摘要在时序图上进行推断式表示学习十分重要。作者提出节点embedding应该同时包括静态节点特征以及变化的拓扑特征。作者提出的TGAT模型以自注意力机制为基础并根据谐波分析的经典Bochner定理开发了一种新颖的功能时间编码技术。通过堆叠TGAT层可以推测原创 2021-05-08 17:22:26 · 9773 阅读 · 2 评论 -
TGN: TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING ON DYNAMIC GRAPHS论文笔记
TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING ON DYNAMIC GRAPHS摘要贡献背景静态图表示学习动态图表示学习摘要本文提出了时间图网络(TGNs),这是一种通用的,有效的框架,可用于对以时间事件序列表示的动态图进行深度学习。贡献提出了时间图网络(TGN)的通用归纳框架,该框架在以事件序列表示的连续时间动态图上运行,并表明许多以前的方法都是TGN的特定实例。新颖的训练策略,允许模型从数据的顺序中学习,同时保持高效的并行处理。作者对框架的不同组成部原创 2021-05-08 14:30:22 · 4638 阅读 · 1 评论