weixin_42147595
码龄7年
关注
提问 私信
  • 博客:22,640
    22,640
    总访问量
  • 26
    原创
  • 79,223
    排名
  • 354
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2018-05-06
博客简介:

weixin_42147595的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    234
    当月
    0
个人成就
  • 获得458次点赞
  • 内容获得1次评论
  • 获得523次收藏
创作历程
  • 26篇
    2024年
成就勋章
TA的专栏
  • 昇思学习
    3篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

昇思Mindspore25天学习打卡Day25:RNN实现情感分类/自然语音处理

情感分类是自然语言处理中的经典任务,是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型,实现如下的效果:输入: This film is terrible正确标签: Negative预测标签: Negative输入: This film is great正确标签: Positive预测标签: Positive最后我们设计一个预测函数,实现开头描述的效果,输入一句评价,获得评价的情感分类。将输入句子进行分词;使用词表获取对应的index id序列;
原创
发布博客 2024.07.15 ·
2074 阅读 ·
44 点赞 ·
0 评论 ·
37 收藏

昇思Mindspore25天学校Day24:LSTM+CRF序列标注

序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。输入序列清华大学座落于首都北京输出标注BIIIOOOOOBI如上表所示,清华大学和北京是地名,需要将其识别,我们对每个输入的单词预测其标签,最后根据标签来识别实体。
原创
发布博客 2024.07.14 ·
962 阅读 ·
28 点赞 ·
0 评论 ·
29 收藏

昇思Mindspore25天学习Day23:Pix2Pix实现图像转换

Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。生成器和判别器。传统上,尽管此类任务的目标都是相同的从像素预测像素,但每项都是用单独的专用机器来处理的。
原创
发布博客 2024.07.13 ·
750 阅读 ·
7 点赞 ·
0 评论 ·
20 收藏

pix2pix用到的指定数据集

发布资源 2024.07.12 ·
tar

昇思Mindsport25天学习打卡Day22:GAN图像生成

生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。生成器的任务是生成看起来像训练图像的“假”图像;判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习产生了相当好的输出。GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个框架中,将会同时训练两个模型——捕捉数据分布的生成模型GGG。
原创
发布博客 2024.07.12 ·
737 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

实验指导与报告实验指导与报告实验指导与报告

发布资源 2024.07.11 ·
rar

昇思Mindspore25天学习打卡Day21:Diffusion扩散模型

如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。我们选择的固定(或预定义)正向扩散过程qqq:它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声一个学习的反向去噪的扩散过程pθp_θpθ​:通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像-由ttt。
原创
发布博客 2024.07.10 ·
1006 阅读 ·
25 点赞 ·
0 评论 ·
28 收藏

昇思Mindspore25天学习打卡Day20:DCGAN生成漫画头像

在下面的教程中,我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中,使用的动漫头像数据集共有70,171张动漫头像图片,图片大小均为96*96.
原创
发布博客 2024.07.09 ·
702 阅读 ·
17 点赞 ·
0 评论 ·
14 收藏

faces.zip动漫头像数据集

发布资源 2024.07.09 ·
zip

昇思MindSpore25天学习Day19:CycleGAN图像风格迁移互换

该模型实现了—种在没有配对示例的情况下学习将图像从源域×转换到目标域Y的方法。该模型一个重要应用领城是域迁移(Dom in Adaptation),可以通俗地理解为图像风格迁移。其实在CycieGAV之前,就已经有了域迁移模型,比以D Pi2Pk,但是Pi2Fik要求训练数据必须是成对的,而现实生活中,要找到两个城(画风)中成对出现的图片是相当困难的,因此 CyclCGAN诞生了,它只需要两种域的数据,而不需要他们有严格对应关系,是一种新的无监督的图像迁移网络。
原创
发布博客 2024.07.08 ·
944 阅读 ·
14 点赞 ·
0 评论 ·
12 收藏

昇思Mindspore25天学习打卡Day18:基于MobileNet2的垃圾分类

MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convoltion)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量,并引入宽度系数α\alphaα和分辦率系数β\betaβ使模型满足不同应用场景的需求.
原创
发布博客 2024.07.06 ·
779 阅读 ·
24 点赞 ·
0 评论 ·
26 收藏

昇思MindSpore25天学习打卡Day17:K近邻算法实现红酒聚类

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。K值,一个样本的分类是由K个邻居的"多数表决“确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。
原创
发布博客 2024.07.05 ·
994 阅读 ·
30 点赞 ·
0 评论 ·
11 收藏

昇思Mindspore学习25天打卡Day16:热门LLM及其他AI应用|基于MindeNLP+MusicGen生成自己的个性化音乐

MusicGen是来自Meta Al的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研密成果参考论文MusicGen直接使用谷歌的t5-base及其权重作为文本编阳器模型,并使用Encodec 32KH2及其汉重作为音频压缩模型,MuscGen解码器是一个语言模型架构,针对音乐生成任务从零开始进行训练。MusicGen模型的新颖之处在于音顿代码的预测方式。
原创
发布博客 2024.07.03 ·
1602 阅读 ·
28 点赞 ·
0 评论 ·
45 收藏

MindeNLP+MusicGen-切片填充

发布资源 2024.07.03 ·
wav

MindeNLP+MusicGen-音频提示生成

发布资源 2024.07.03 ·
wav

MindeNLP+MusicGen-文本提示音

发布资源 2024.07.03 ·
wav

MusicGen1-无提示生成的声音

发布资源 2024.07.03 ·
wav

昇思Mindspore25天学习打卡Day15:Vision Transform图像分类

近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的型ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。本案例完成了一个ViT模型在lmageNet数据上进行训练,验证和推理的过程,其中,对关键的VT模型结构和原理作了讲解。
原创
发布博客 2024.07.03 ·
617 阅读 ·
8 点赞 ·
0 评论 ·
21 收藏

昇思Mindspore25天学习打卡Day14:SSD目标检测

SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。使用NvidiaTitan X在VOC 2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(mean Average Precision)以及59FPS:对于512x512的网络,达到了76,9%mAP,超越当时最强的Faster RCNN(73.2%mAP)。具体可参考论文[1]。SSD目标检测主流算法分成可以两个类型。
原创
发布博客 2024.07.01 ·
849 阅读 ·
11 点赞 ·
0 评论 ·
12 收藏

昇思Mindspore学习25天打卡Day13:ShuffleNet图像分类

ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作: Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShufleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。
原创
发布博客 2024.07.01 ·
626 阅读 ·
12 点赞 ·
0 评论 ·
28 收藏
加载更多