python词性统计,python结巴分词以及词频统计实例

# coding=utf-8

”’

Created on 2018年3月19日

@author: chenkai

结巴分词

支持三种分词模式:

精确模式:     试图将句子最精确地切开,适合文本分析;

全模式:       把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

搜索引擎模式: 在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

”’

import jieba

import jieba.analyse

seg_list =  jieba.cut(“我来到北京清华大学找妹子,我很开心”,cut_all=True)

print  “全模式: “, “/”.join(seg_list)

seg_list2 =  jieba.cut(“我来到北京清华大学找妹子,我很开心”,cut_all=False)

print  “精确模式: “, “/”.join(seg_list2)

#jieba.cut() 默认是精确模式

seg_list3 = jieba.cut_for_search(“我来到北京清华大学找妹子,我很开心”)  # 搜索引擎模式

print  “搜索引擎模式: “, “#”.join(seg_list3)

list2=”/”.join(seg_list3)

”’

关键词提取

基于 TF-IDF 算法的关键词抽取

jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())

sentence 为待提取的文本

topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20

withWeight 为是否一并返回关键词权重值,默认值为 False

allowPOS 仅包括指定词性的词,默认值为空,即不筛选

jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

”’

sentence=”我来到北京清华大学找妹子,我很开心”

listGJC=jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())

print “关键词提取:”,”,”.join(listGJC)

———————词频统计

# coding=utf-8

”’

Created on 2018年3月19日

@author: chenkai

结巴分词

支持三种分词模式:

精确模式:     试图将句子最精确地切开,适合文本分析;

全模式:       把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

搜索引擎模式: 在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

”’

import sys

reload(sys)

sys.setdefaultencoding(‘utf-8’)

import jieba

import jieba.analyse

import re,collections

def getNum(text,path):

word = []

counter = {}

seg_list3 = jieba.cut(text,cut_all=True)

listStr=”#”.join(seg_list3)

#print  “全模式: “,listStr

list3 = listStr.decode(“utf-8”).split(‘#’)

for w in list3:

if not w in word:

word.append(w)

if not w in counter:

counter[w] = 1

else:

counter[w] += 1

counter_list = sorted(counter.items(), key=lambda x: x[1], reverse=True)

#print counter_list

f = open(path,”w”)

for j in counter_list:

text= “\””+j[0].encode(“gb18030”).decode(“gb18030″)+”\”,”+str(j[1])

print text

f.write(text+”\n”)

print “the result write in “+path+”…”

print “finish…”

f.close()

getNum(sys.argv[1],sys.argv[2])

结巴分词早期版本。 * 结巴分词(java版) jieba-analysis 首先感谢jieba分原作者[[https://github.com/fxsjy][fxsjy]],没有他的无私贡献,我们也不会结识到结巴 分,更不会有现在的java版本。 结巴分词的原始版本为python编写,目前该项目在github上的关注量为170, 打星727次(最新的数据以原仓库为准),Fork238次,可以说已经有一定的用户群。 结巴分词(java版)只保留的原项目针对搜索引擎分的功能(cut_for_index、cut_for_search),词性标注,关键提取没有实现(今后如用到,可以考虑实现)。 * 简介 ** 支持分模式 - Search模式,用于对用户查询 - Index模式,用于对索引文档分 ** 特性 - 支持多种分模式 - 全角统一转成半角 - 用户典功能 - conf 目录有整理的搜狗细胞库 - 支持词性标注(感谢 [[https://github.com/linkerlin][@linkerlin]] 的贡献) * 如何获取 - 当前稳定版本 #+BEGIN_SRC xml com.huaban jieba-analysis 0.0.2 #+END_SRC - 当前快照版本 - 支持词性标注 [[https://github.com/huaban/jieba-analysis/pull/4][#4]] - 修复以'-'连接错误问题 [[https://github.com/huaban/jieba-analysis/issues/3][#3]] #+BEGIN_SRC xml com.huaban jieba-analysis 1.0.0-SNAPSHOT #+END_SRC * 如何使用 - Demo #+BEGIN_SRC java @Test public void testDemo() { JiebaSegmenter segmenter = new JiebaSegmenter(); String[] sentences = new String[] {"这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。", "我不喜欢日本和服。", "雷猴回归人间。", "工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作", "结果婚的和尚未结过婚的"}; for (String sentence : sentences) { System.out.println(segmenter.process(sentence, SegMode.INDEX).toString()); } } #+END_SRC * 算法(wiki补充...) - [ ] 基于 =trie= 树结构实现高效图扫描 - [ ] 生成所有切可能的有向无环图 =DAG= - [ ] 采用动态规划算法计算最佳切组合 - [ ] 基于 =HMM= 模型,采用 =Viterbi= (维特比)算法实现未登录识别 * 性能评估 - 测试机配置 #+BEGIN_SRC screen Processor 2 Intel(R) Pentium(R) CPU G620 @ 2.60GHz Memory:8GB 分测试时机器开了许多应用(eclipse、emacs、chrome...),可能 会影响到测试速度 #+END_SRC - [[src/test/resources/test.txt][测试文本]] - 测试结果(单线程,对测试文本逐行分,并循环调用上万次) #+BEGIN_SRC screen 循环调用一万次 第一次测试结果: time elapsed:12373, rate:2486.986533kb/s, words:917319.94/s 第二次测试结果: time elapsed:12284, rate:2505.005241kb/s, words:923966.10/s 第三次测试结果: time elapsed:12336, rate:2494.445880kb/s, words:920071.30/s 循环调用2万次 第一次测试结果: time elapsed:22237, rate:2767.593144kb/s, words:1020821.12/s 第二次测试结果: time elapsed:22435, rate:2743.167762kb/s, words:1011811.87/s 第三次测试结果: time elapsed:22102, rate:2784.497726kb/s, words:1027056.34/s 统计结果:典加载时间1.8s左右,分效率每秒2Mb多,近100万。 2 Processor Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz 12G 测试效果 time elapsed:19597, rate:3140.428063kb/s, words:1158340.52/s time elapsed:20122, rate:3058.491639kb/s, words:1128118.44/s #+END_SRC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值