本文提出一种新的基于DCT频率域的通道注意力,其在分类、检测和分割任务上,性能优于SENet、CBAM和GCNet等主干,代码和模型即将开源!
注:文末附计算机视觉交流群
FcaNet: Frequency Channel Attention Networks
作者单位:浙江大学(李玺团队)
论文:FcaNet: Frequency Channel Attention Networks
注意力机制,尤其是通道注意力,在计算机视觉领域取得了巨大的成功。许多工作专注于如何设计有效的通道注意力机制,同时忽略一个基本问题,即使用全局平均池(GAP)作为毫无疑问的预处理方法。
在这项工作中,我们从不同的角度出发,并使用frequency analysis重新考虑通道的注意力。基于频率域分析,我们在数学上证明了传统的GAP是频域中特征分解的特例。有了证明,我们自然地在频域上概括了通道注意力机制的预处理,并提出了具有新颖的multi-spectral通道注意力的FcaNet。
所提出的方法简单但有效。我们只在计算中更改一行代码,以在现有通道注意力方法中实施我们的方法。
主要贡献:
实验结果
与其他在图像分类,目标检测和实例分割任务上的通道注意力方法相比,该方法可实现最新的结果。与基线SENet-50相比,在相同数量的参数和相同的计算成本的情况下,我们的方法在ImageNet上的Top-1准确性方面可提高1.8%。我们的代码和模型将公开提供。
CVer-计算机视觉交流群
建了CVer微信交流群!细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。想要进计算机视觉学习交流群的同学,可以直接加微信号:CVer5555。加的时候备注一下:研究方向+学校+昵称,即可。然后就可以拉你进群了。
强烈推荐大家关注CVer知乎账号和CVer微信公众号,可以快速了解到最新优质的CV论文。
推荐阅读
170 FPS!YolactEdge:实时实例分割,Xavier/2080Ti高达30/170FPS
基于深度学习的基于内容的图像检索技术:十年调研(2011-2020)
清华大学提出Pointformer:基于Transformer的3D目标检测
同济大学等提出EQL v2:用于长尾目标检测的新梯度平衡方法
FAIR提出:注意力可视化之外的Transformer可解释性
清华大学提出PCT:Point Cloud Transformer
细长目标检测:分析与改进
牛津大学等提出:Point Transformer
Cell-DETR:基于Transformer的细胞实例分割网络
清华大学等提出PED:用于行人检测的DETR
亚马逊李沐团队提出:行为识别的全面调研(2014-2020)
华盛顿大学提出:实时高分辨率图像抠图网络
对医学图像分割中的置信度进行量化
SSL4MIS:半监督医学图像分割论文合集+benchmark
你的NMS该换了!Confluence:实现更准、更强的目标检测
CNN与Transformer结合!东南大学提出视频帧合成新架构 ConvTransformer
DenseCL:自监督视觉预训练的密集对比学习
北大和港中文提出ACT:自适应聚类Transformer的端到端目标检测
清华大学提出:预训练表示的Bi-tuning
综述 | 基于深度学习的单目深度估计技术:全面调研(2014-2020)
AAAI 2021 | 国科大和上海交大提出RSDet:旋转目标新网络,代码已开源!
420 FPS!LSTR:基于Transformer的端到端实时车道线检测
图像分割涨点技巧!从39个Kaggle竞赛中总结出的分割Tips和Tricks
涨点明显!港中文等提出SplitNet:通过切分网络和结合Co-Training提升CNN性能
重磅!中山大学提出行人重识别新方法和史上最大数据集SYSU-30k,已开源!
AAAI 2021 | 上海交大等提出R3Det:旋转目标检测网络,代码已开源!
北京大学等提出SR新模块!通过Squeeze Reasoning实现高效的场景理解
冠军解决方案!用于脑肿瘤分割的nnU-Net改进
刷新WIDER Face纪录!TinaFace:人脸检测新网络,代码已开源!
这个AI能帮你女朋友自拍!从照片生成3D视频,总有个角度让她满意
STTR:基于Transformers的立体深度估计网络,代码已开源!
用GAN生成70岁的你!还可以重返17岁,代码已开源!ECCV 2020 Adobe等新研究
WACV2021 | 用于小目标检测的FPN中的高效融合因子
综述 | 对比自监督学习技术:全面调研
85.4 mIOU!NVIDIA:使用多尺度注意力进行语义分割
深入研究Label Smoothing(标签平滑)
使用PyTorch时,最常见的4个错误
NeurIPS 2020 | Auto-Panoptic:用于全景分割的协作式多组件体系结构搜索
NeurIPS 20 | RelationNet++: Transformer桥接视觉表示的目标检测
利用YOLOv4和Deep SORT实现多摄像头实时目标跟踪和计数(已开源)
NeurIPS 20 | 超越EfficientNet!TinyNet:玩转网络的分辨率,深度和宽度
涨点技巧!汇集13个Kaggle图像分类项目的性能提升指南
利用知识蒸馏改进目标检测:面向准确高效的检测器
使用深度学习从视频中估计车辆的速度(已开源)
ECCV 2020 | 旷视开源LabelEnc:提升目标检测的新型中间监督方法
这9个技巧让你的PyTorch模型训练得飞快!
牛津博士论文 | 学习重建和分割3D目标(143页PDF)
谷歌刚刚发布Objectron新数据集,可完美检测3D目标,超过4百万幅图像和15K视频剪辑!
综述 | MIT提出视频理解/行为识别:全面调研(2004-2020)
综述 | 基于无人机的目标跟踪的相关滤波器:全面调研
从三个维度加速你的CNN:全面的剪枝框架
Recall Loss:用于不平衡图像分类和语义分割的召回损失
即插即用!Rotate to Attend:卷积Triplet注意力模块
旷视提出MegDetV2:目标检测/实例分割系统
综述 | 基于深度学习的医学图像分割技术:全面调研
ResNet还是DenseNet?即插即用的DS涨点神器来了!
综述 | 基于深度学习的端到端人脸识别技术:全面调研
TBC:共享Thinner Filters,实现更强的CNN!
综述 | 行人检测技术(从手工特征到深度学习):全面调研
超越EfficientNets!无需注意力,也能让你的网络更快更强!
OpenCV 4.5来了!更强的SIFT,改进RANSAC算法,新增目标跟踪网络SiamRPN++
综述 | 基于深度学习的实时语义分割方法:全面调研
涨点神器!南航提出AFF:注意力特征融合
NeurIPS 2020 | 谷歌大脑提出:重新思考预训练和自训练
NeurIPS 2020 | 用于图像复原/恢复的神经稀疏表示
NeurIPS 2020 | aLRPLoss:统一目标检测中的分类和定位的平衡损失函数
CCE:具有互补交叉熵的不平衡图像分类
谷歌地标检索2020 Kaggle 第一名解决方案
ECCV AIM 2020 真实图像超分辨率挑战赛3项冠军解决方案
LVIS 实例分割挑战赛2020的第一名解决方案:好的Box不能保证好的Mask
ETH Zurich提出DPIR:具有Denoiser先验的即插即用图像恢复
ECCV 2020 | NAS-DIP:通过NAS实现DIP(去噪/去雾/超分辨率/修复等)
综述 | 小样本学习:全面调研(Few-shot)
使用深度神经网络从Noisy Labels中学习:全面调研
剪枝filter?还是剪枝layer?这是个问题
ECCV 2020 | WeightNet:重新探索Weight网络的设计空间
ECCV 2020 | 53.5 AP!PAA:用于目标检测的IoU预测的概率Anchor分配
ECCV 2020 | 南京理工提出FPT:特征金字塔Transformer
ECCV 2020 | BMask R-CNN:边界保持的Mask R-CNN
ECCV 2020 | 即插即用!PSConv:将特征金字塔压缩到紧凑