实现通道注意力_修改一行代码,简单粗暴涨点!浙大提出FcaNet:频率域通道注意力网络...

本文介绍了FcaNet,一种基于DCT频率域的通道注意力网络,它在分类、检测和分割任务上超越了SENet、CBAM和GCNet。只需一行代码改动,就能实现性能提升,且代码和模型即将开源。
摘要由CSDN通过智能技术生成

260cd062f0c27bf3e5c1c5de10394f17.png

本文提出一种新的基于DCT频率域的通道注意力,其在分类、检测和分割任务上,性能优于SENet、CBAM和GCNet等主干,代码和模型即将开源!

注:文末附计算机视觉交流群

FcaNet: Frequency Channel Attention Networks

27577895b17bd1d6664e74b10b4e857e.png
作者单位:浙江大学(李玺团队)
论文:FcaNet: Frequency Channel Attention Networks

注意力机制,尤其是通道注意力,在计算机视觉领域取得了巨大的成功。许多工作专注于如何设计有效的通道注意力机制,同时忽略一个基本问题,即使用全局平均池(GAP)作为毫无疑问的预处理方法。

在这项工作中,我们从不同的角度出发,并使用frequency analysis重新考虑通道的注意力。基于频率域分析,我们在数学上证明了传统的GAP是频域中特征分解的特例。有了证明,我们自然地在频域上概括了通道注意力机制的预处理,并提出了具有新颖的multi-spectral通道注意力的FcaNet。

3077128bae98e575c3bc6e7b3e6515e7.png

3767ceaf137b8af07a7b69e286281001.png

274d5a80327168a21c1c800ae9e05911.png

e8d70b00f2b890bae905b7ca2930fa1d.png

所提出的方法简单但有效。我们只在计算中更改一行代码,以在现有通道注意力方法中实施我们的方法。

23b3e6b2b7c234042203af70849ae73b.png

主要贡献:

676e6d877e195ac89562faff5b75830d.png

实验结果

与其他在图像分类,目标检测和实例分割任务上的通道注意力方法相比,该方法可实现最新的结果。与基线SENet-50相比,在相同数量的参数和相同的计算成本的情况下,我们的方法在ImageNet上的Top-1准确性方面可提高1.8%。我们的代码和模型将公开提供。

0b54265c84cb11955db6a0b72bb8c6e2.png

a12afe3158ba5b3a7bdaadf1b8ac7bbf.png

0c3ee50509dbe1f85e91db44fc438a2d.png

58c58d548e0dd2b3f800344c4fb44d03.png

CVer-计算机视觉交流群

建了CVer微信交流群!细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。想要进计算机视觉学习交流群的同学,可以直接加微信号:CVer5555。加的时候备注一下:研究方向+学校+昵称,即可。然后就可以拉你进群了。

强烈推荐大家关注CVer知乎账号和CVer微信公众号,可以快速了解到最新优质的CV论文。

推荐阅读

170 FPS!YolactEdge:实时实例分割,Xavier/2080Ti高达30/170FPS

基于深度学习的基于内容的图像检索技术:十年调研(2011-2020)

清华大学提出Pointformer:基于Transformer的3D目标检测

同济大学等提出EQL v2:用于长尾目标检测的新梯度平衡方法

FAIR提出:注意力可视化之外的Transformer可解释性

清华大学提出PCT:Point Cloud Transformer

细长目标检测:分析与改进

牛津大学等提出:Point Transformer

Cell-DETR:基于Transformer的细胞实例分割网络

清华大学等提出PED:用于行人检测的DETR

亚马逊李沐团队提出:行为识别的全面调研(2014-2020)

华盛顿大学提出:实时高分辨率图像抠图网络

对医学图像分割中的置信度进行量化

SSL4MIS:半监督医学图像分割论文合集+benchmark

你的NMS该换了!Confluence:实现更准、更强的目标检测

CNN与Transformer结合!东南大学提出视频帧合成新架构 ConvTransformer

DenseCL:自监督视觉预训练的密集对比学习

北大和港中文提出ACT:自适应聚类Transformer的端到端目标检测

清华大学提出:预训练表示的Bi-tuning

综述 | 基于深度学习的单目深度估计技术:全面调研(2014-2020)

AAAI 2021 | 国科大和上海交大提出RSDet:旋转目标新网络,代码已开源!

420 FPS!LSTR:基于Transformer的端到端实时车道线检测

图像分割涨点技巧!从39个Kaggle竞赛中总结出的分割Tips和Tricks

涨点明显!港中文等提出SplitNet:通过切分网络和结合Co-Training提升CNN性能

重磅!中山大学提出行人重识别新方法和史上最大数据集SYSU-30k,已开源!

AAAI 2021 | 上海交大等提出R3Det:旋转目标检测网络,代码已开源!

北京大学等提出SR新模块!通过Squeeze Reasoning实现高效的场景理解

冠军解决方案!用于脑肿瘤分割的nnU-Net改进

刷新WIDER Face纪录!TinaFace:人脸检测新网络,代码已开源!

这个AI能帮你女朋友自拍!从照片生成3D视频,总有个角度让她满意

STTR:基于Transformers的立体深度估计网络,代码已开源!

用GAN生成70岁的你!还可以重返17岁,代码已开源!ECCV 2020 Adobe等新研究

WACV2021 | 用于小目标检测的FPN中的高效融合因子

综述 | 对比自监督学习技术:全面调研

85.4 mIOU!NVIDIA:使用多尺度注意力进行语义分割

深入研究Label Smoothing(标签平滑)

使用PyTorch时,最常见的4个错误

NeurIPS 2020 | Auto-Panoptic:用于全景分割的协作式多组件体系结构搜索

NeurIPS 20 | RelationNet++: Transformer桥接视觉表示的目标检测

利用YOLOv4和Deep SORT实现多摄像头实时目标跟踪和计数(已开源)

NeurIPS 20 | 超越EfficientNet!TinyNet:玩转网络的分辨率,深度和宽度

涨点技巧!汇集13个Kaggle图像分类项目的性能提升指南

利用知识蒸馏改进目标检测:面向准确高效的检测器

使用深度学习从视频中估计车辆的速度(已开源)

ECCV 2020 | 旷视开源LabelEnc:提升目标检测的新型中间监督方法

这9个技巧让你的PyTorch模型训练得飞快!

牛津博士论文 | 学习重建和分割3D目标(143页PDF)

谷歌刚刚发布Objectron新数据集,可完美检测3D目标,超过4百万幅图像和15K视频剪辑!

综述 | MIT提出视频理解/行为识别:全面调研(2004-2020)

综述 | 基于无人机的目标跟踪的相关滤波器:全面调研

从三个维度加速你的CNN:全面的剪枝框架

Recall Loss:用于不平衡图像分类和语义分割的召回损失

即插即用!Rotate to Attend:卷积Triplet注意力模块

旷视提出MegDetV2:目标检测/实例分割系统

综述 | 基于深度学习的医学图像分割技术:全面调研

ResNet还是DenseNet?即插即用的DS涨点神器来了!

综述 | 基于深度学习的端到端人脸识别技术:全面调研

TBC:共享Thinner Filters,实现更强的CNN!

综述 | 行人检测技术(从手工特征到深度学习):全面调研

超越EfficientNets!无需注意力,也能让你的网络更快更强!

OpenCV 4.5来了!更强的SIFT,改进RANSAC算法,新增目标跟踪网络SiamRPN++

综述 | 基于深度学习的实时语义分割方法:全面调研

涨点神器!南航提出AFF:注意力特征融合

NeurIPS 2020 | 谷歌大脑提出:重新思考预训练和自训练

NeurIPS 2020 | 用于图像复原/恢复的神经稀疏表示

NeurIPS 2020 | aLRPLoss:统一目标检测中的分类和定位的平衡损失函数

CCE:具有互补交叉熵的不平衡图像分类

谷歌地标检索2020 Kaggle 第一名解决方案

ECCV AIM 2020 真实图像超分辨率挑战赛3项冠军解决方案

LVIS 实例分割挑战赛2020的第一名解决方案:好的Box不能保证好的Mask

ETH Zurich提出DPIR:具有Denoiser先验的即插即用图像恢复

ECCV 2020 | NAS-DIP:通过NAS实现DIP(去噪/去雾/超分辨率/修复等)

综述 | 小样本学习:全面调研(Few-shot)

使用深度神经网络从Noisy Labels中学习:全面调研

剪枝filter?还是剪枝layer?这是个问题

ECCV 2020 | WeightNet:重新探索Weight网络的设计空间

ECCV 2020 | 53.5 AP!PAA:用于目标检测的IoU预测的概率Anchor分配

ECCV 2020 | 南京理工提出FPT:特征金字塔Transformer

ECCV 2020 | BMask R-CNN:边界保持的Mask R-CNN

ECCV 2020 | 即插即用!PSConv:将特征金字塔压缩到紧凑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值