1.整数转罗马数字
题目描述:
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
示例 1:
输入: 3
输出: "III"
示例 2:
输入: 4
输出: "IV"
示例 3:
输入: 9
输出: "IX"
示例 4:
输入: 58
输出: "LVIII"
解释: L = 50, V = 5, III = 3.
示例 5:
输入: 1994
输出: "MCMXCIV"
解释: M = 1000, CM = 900, XC = 90, IV = 4.
解决方法:
1.暴力法把每一位上的从值都记住
2.贪心法
class Solution {
public:
string intToRoman(int num) {
vector<int> nu = {1000,900,500,400,100,90,50,40,10,9,5,4,1};
vector<string> Roman = {"M","CM","D","CD","C","XC","L","XL","X","IX","V","IV","I"};
string res = "";
int ss = nu.size();
for(int i = 0;i<ss;++i){
while(num>=nu[i]){
res.append(Roman[i]);
num -= nu[i];
}
}
return res;
}
};
2.罗马数字转整数
题目描述:
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
示例 1:
输入: "III"
输出: 3
示例 2:
输入: "IV"
输出: 4
示例 3:
输入: "IX"
输出: 9
示例 4:
输入: "LVIII"
输出: 58
解释: L = 50, V= 5, III = 3.
示例 5:
输入: "MCMXCIV"
输出: 1994
解释: M = 1000, CM = 900, XC = 90, IV = 4.
解题思路:
1.构建一个字典记录所有罗马数字子串,这里长度为2的字串记录的值为:实际值-字串内左边罗马数字对应的值
2.遍历整个s,判断当前位置和下一个位置组成的字符串是否在字典内,如果在就记录值,如果不在说明当前位置就不存在小数字在前面的情况,直接记录当前位置的字符对应值
class Solution {
public:
int romanToInt(string s) {
unordered_map<string,int> m = {{"I",1},{"IV",3},{"IX",8},{"V",5},{"X",10},{"XL",30},{"XC",80},{"L",50},{"C",100},{"CD",300},{"D",500},
{"CM",800},{"M",1000}};
int res = m[s.substr(0,1)];
for(int i =1;i<s.size();++i){
string num_two = s.substr(i-1,2);
string num_one = s.substr(i,1);
res += m[num_two] ? m[num_two]:m[num_one];
}
return res;
}
};
3.下一个排列
题目描述:
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
解题思路:
void nextPermutation(vector<int>& nums) {next_permutation(nums.begin(),nums.end());}
STL的库函数next_permutation一行搞定。
upper_bound函数:找出非递减序列中第一个大于给定值的元素,二分查找的变形。或者可以收录二分查找
先从后往前找到一个递减数列,反转,upper_bound解决
class Solution {
public:
void nextPermutation(vector<int>& nums) {
if(nums.size()>1){
int i ;
for(i=nums.size()-1;i>0&&nums[i-1]>=nums[i];--i);
reverse(nums.begin()+i,nums.end());
if(i--!=0){
// auto it = upper_bound(nums.begin()+i,nums.end(),nums[i]);
// swap(nums[i],*it);
int left = i+1;
int right = nums.size()-1;
while(left<=right){
int mid = left+((right-left)>>1);
if(nums[mid]>nums[i]){
if(mid == 0||nums[mid-1]<=nums[i]){
swap(nums[i],nums[mid]);
return ;
}else{
right = mid - 1;
}
}else{
left = mid+1;
}
}
}
}
}
};