python数据挖掘--评估指标

本文记录了数据挖掘中常用的一些评价指标,包括Acc、f1、recall、precision的计算,并详细介绍了ROC曲线和AUC的使用方法,以及MSE均方误差在评估中的应用。
摘要由CSDN通过智能技术生成

数据挖掘路上滴滴点点,记录下常用评价指标。持续更新。

Acc、f1、recall、precision

metrics_lr = {
    'accuracy': accuracy_score(prediction_lr, Y_test),
    'f1': f1_score(prediction_lr, Y_test, average="macro"),
    'recall': recall_score(prediction_lr, Y_test, average="macro"),
    'precision': precision_score(prediction_lr, Y_test, average="macro")
}
print(metrics_lr)

 

ROC、AUC用法

lg_y_score = lg.decision_function(X_test)

lg_fpr, lg_tpr, lg_threasholds = metrics.roc_curve(Y_test.ravel(),lg_y_score.ravel())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值