看完这份全国各地结婚/离婚数据,我彻底懵了。。。

大家好,我是 👉【Python当打之年】

不久前,中国人口调查机构就90后的婚姻状态进行了调查,项目遍及情感问题和婚恋问题,其中最引人瞩目的一项,便是年轻人的离婚率,高达56.7%可以说一半都离过婚

本期根据全国历年各地区民政登记数据,看看这些年的各地区的结婚/离婚情况,文末附数据获取方式。

1. 全国历年结婚/离婚数据

结婚登记(万对)

在这里插入图片描述

离婚登记(万对)

在这里插入图片描述

全国历年结/离婚趋势

在这里插入图片描述

全国结婚登记数量在2007年达到峰值,共有1346.93万对新人登记。之后持续下滑至2018年786.1万对,2019年回升至804.95万对。

全国离婚登记数量近20年一直处于下降趋势,从470.09万对下降至117.6万对。不过下降趋势较结婚登记下降趋势来的缓慢。

代码:

l1 = (
    Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),width='900px',height='600px'))
    .add_xaxis(xaxis_data=df_divorce.columns[1:][::-1])
    .add_yaxis(
        series_name="结婚登记",
        y_axis=[round(i,2) for i in df_marry.loc["总计"].values.tolist()[1:]],
        symbol_size=8,
        is_smooth=True,
        color="#009ad6",
    )
    .add_yaxis(
        series_name="离婚登记",
        y_axis=[round(i,2) for i in df_divorce.loc["总计"].values.tolist()[1:]],
        symbol_size=8,
        is_smooth=True,        
        color="#ed1941",
    )
    # 系列配置项
    .set_series_opts(linestyle_opts=linestyle_dic,
                     areastyle_opts=opts.AreaStyleOpts(opacity=0.6),
                     label_opts=opts.LabelOpts(is_show=False),
                     markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
                     markpoint_opts=opts.MarkPointOpts(
                        data=[opts.MarkPointItem(type_="max"), opts.MarkPointItem(type_="min")],
                        symbol_size=[65, 50],
                        label_opts=opts.LabelOpts(position="inside", color="#fff", font_size=10)
                        ),
                    )
    # 通用配置项
    .set_global_opts(
        title_opts=opts.TitleOpts(
                title='历年全国结/离婚登记趋势',
                pos_top='2%',
                title_textstyle_opts=opts.TextStyleOpts(color='#4169E1', font_size=20)),
        tooltip_opts=opts.TooltipOpts(trigger="axis"),
        xaxis_opts=opts.AxisOpts(name="",type_="category", 
                         boundary_gap=True,
                         axisline_opts=opts.AxisLineOpts(is_show=True,
                                                         linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093')),
                         axislabel_opts=opts.LabelOpts(rotate=45)),
        yaxis_opts=opts.AxisOpts(
                axislabel_opts=opts.LabelOpts(formatter="{value} /万对"),
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(font_size=12,font_weight='bold',color='#FF1493'),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=False,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))
            ),
        # 图例样式
        legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',legend_icon='roundRect'),
    )
)

2. 北京-帝都

在这里插入图片描述

北京2019年结婚登记数量为12.9万对,但是离婚登记数量却达到了8.38万对,离结率高达65.96%,历年的离婚登记数据呈现持续上涨趋势,而近几年结婚登记数据却呈下降趋势。

3. 上海-魔都

在这里插入图片描述

上海2019年结婚登记数量为9.87万对,但是离婚登记数量却达到了6.17万对,离结率同样达到了62.51%。近几年离婚登记数量相对平稳,不过结婚登记处于下降趋势。

4. 天津-哏都

在这里插入图片描述
天津2019年结婚登记数量为9.87万对,但是离婚登记数量却达到了7.47万对,离婚数据为近20年新高,离结率高达77.49%什么概念!

5. 重庆-雾都

在这里插入图片描述
重庆2019年结婚登记数量为23.83万对,但是离婚登记数量却达到了15.62万对,离结率为65.54%

以上是四个直辖市的结婚/离婚数据情况,基本上离结率都在65%以上,而且近几年该数据还处于上升的趋势。

接下来我们看看几个人口大省的情况

6. 其他省市

广东省
在这里插入图片描述
江苏省
在这里插入图片描述
河南省
在这里插入图片描述
广东省、江苏省、河南省历年离婚登记数据趋势比较明显,一直属于上升状态,而近几年的结婚登记数据一直处于下降状态。

7. 全国各地离结率

在这里插入图片描述
在这里插入图片描述
全国离结率超过50%的地区:

天津市、黑龙江省、吉林省、辽宁省、重庆市、北京市、上海市、内蒙古自治区、河北省、湖南省、湖北省、江苏省、浙江省、山东省、四川省。

根据地图显示,全国离结率较高的地区大多集中在北方,南方比例较少。

数据获取(可在线运行)https://www.heywhale.com/mw/project/611dfe6afe727700176f3e34


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

推荐阅读

123个Pandas常用基础指令,真香!
爬虫+可视化 | 动态展示2020东京奥运会奖牌世界分布
Pandas+Pyecharts | 北京某平台二手房数据分析+可视化
Pandas+Pyecharts | 2021中国大学综合排名分析+可视化
可视化 | Python绘制高颜值台风地理轨迹图
可视化 | 用Python分析近5000个旅游景点,告诉你假期应该去哪玩
可视化 | Python精美地图动态展示近20年全国各省市GDP
可视化 | Python陪你过520:在你身边,你在身边
爬虫 | Python送你王者荣耀官网全套皮肤
爬虫 | 用python构建自己的IP代理池,再也不担心IP不够用啦!
技巧 | 20个Pycharm最实用最高效的快捷键(动态展示)
技巧 | 5000字超全解析Python三种格式化输出方式【% / format / f-string】
技巧 | python定时发送邮件(自动添加附件)
爬虫 | Python送你王者荣耀官网全套皮肤
爬虫 | 用python构建自己的IP代理池,再也不担心IP不够用啦!

文章首发微信公众号 “Python当打之年” ,每天都有python编程技巧推送,希望大家可以喜欢
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python当打之年

您的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值