数据结构-哈希表、映射和集合

哈希表(Hash table)

简介

  1. 哈希表,也叫散列表,是根据关键码值(key value)直接进行访问的数据结构。
  2. 哈希表通过关键码值映射到表中的一个位置来访问记录,以加快查找的速率。
  3. 这个映射函数叫做散列函数(Hash Function),存放记录的数组叫做哈希表(散列表)。

工程实践

  1. 电话号码簿
  2. 用户信息表
  3. 缓存(LRU Cache)
  4. 键值对存储(Redis)

哈希函数(Hash Function)

在这里插入图片描述

哈希碰撞(Hash Collisios)

在这里插入图片描述

  1. 哈希碰撞:不同的数据经过哈希函数之后得到相同的值,产生碰撞。
  2. 解决方法:拉链式解决冲突法。在同一个位置拉一个链表来进行存储。若在同一位置堆积很多值,即这个链表很长,这个时候的查询时间复杂度会退化到O(n)。
  3. 哈希表的查询复杂度为O(1),最坏情况为O(n)。
  4. 好的哈希函数会尽量少产生碰撞,但是当产生碰撞时,可以使用拉链式解决方法。在这里插入图片描述

Java中的哈希表

在这里插入图片描述

Set的实现分为:HashSet和TreeSet
  1. HashSet通过HashMap来实现。在存储时将元素放进HashMap的key位置上,生成一个占位放在value位置上。
public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }
  1. TreeSet通过红黑树来实现(待补)
Map的实现:HashMap和TreeMap
  1. 通过HashMap实现

常量与变量

// 默认初始容量必须是2的幂,这里是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

// 最大容量(必须是2的幂且小于2的30次方,如果在构造函数中传入过大的容量参数将被这个值替换)
static final int MAXIMUM_CAPACITY = 1 << 30;

// 默认负载因子,啥叫负载因子呢,HashMap通过负载因子与桶的数量计算得到所能容纳的最大元素数量
// 计算公式为threshold = capacity * loadFactor
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 链表转化为红黑树的阈值
static final int TREEIFY_THRESHOLD = 8;

// 红黑树转化为链表的阈值,扩容时才可能发生
static final int UNTREEIFY_THRESHOLD = 6;

// 进行树化的最小容量,防止在调整容量和形态时发生冲突
static final int MIN_TREEIFY_CAPACITY = 64;

hash()

 static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

当key为null时直接返回0,key的hash值高16位不变,低16位与高16位异或作为key的最终hash值。如此设置的原因是因为下标的计算是:n = table.length; index = (n-1) & hash;
table的长度都是2的幂,因此index仅与hash值的低n位有关,hash值的高位都被与操作置为0了,所以异或降低冲突。

getNode()方法 :

public V get(Object key) {
        Node<K,V> e;
        //求出key的hash值,调用getNode
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //当table不为空,且计算得到的查询位置table[i]也不为空时继续
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判断table[i]的首个元素first是否等于key,若相等直接将其返回
            if (first.hash == hash &&      // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
            //如果存储结构是红黑树,则执行红黑树中的查询操作
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                //如果存储结构是链表,则遍历链表,找到key所在位置
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

putVal()方法

public V put(K key, V value) {
        //求出Key的值,并直接调用putVal
        return putVal(hash(key), key, value, false, true);
    }

/**
     * Implements Map.put and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //1.如果table为空或者length为0,则调用resize扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //2.根据Key的hash值得到插入的数组索引i,如果table[i]为空,直接直接新建结点进行插入即可
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //如果table[i]不为空
        else {
            Node<K,V> e; K k;
            //3.判断table[i]的首个元素是否等于Key,若等于直接覆盖value
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //4.判断table[i]是否为treeNode,即它是否为红黑树,如果是直接在树中插入键值对
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
            //5.遍历table[i]
                for (int binCount = 0; ; ++binCount) {
                //若链表长度小于8,则执行链表的插入操作
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //若链表长度大于等于8,则将链表转换为红黑树,执行插入操作
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //在遍历过程中,如果发现Key已存在则直接覆盖value
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //Key已存在,用新的value覆盖原来的value,返回旧的value
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //modCount+1,用来实现fail-fast机制
        ++modCount;
        //插入成功后,判断实际存在的键值对数量size是否超过最大容量threshold,如果超过调用resize扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
  1. TreeMap通过红黑树来实现(待补)
展开阅读全文
©️2020 CSDN 皮肤主题: 1024 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值