论文阅读 [TPAMI-2022] A General Differentiable Mesh Renderer for Image-Based 3D Reasoning
论文搜索(studyai.com)
搜索论文: A General Differentiable Mesh Renderer for Image-Based 3D Reasoning
搜索论文: http://www.studyai.com/search/whole-site/?q=A+General+Differentiable+Mesh+Renderer+for+Image-Based+3D+Reasoning
关键字(Keywords)
Three-dimensional displays; Rendering (computer graphics); Two dimensional displays; Standards; Cognition; Task analysis; Vision and scene understanding, modeling and recovery of physical attributes, perceptual reasoning; computer graphics, picture/image generat
机器学习; 机器视觉
无监督学习; 场景解析; 三维场景; 单目重建
摘要(Abstract)
Rendering bridges the gap between 2D vision and 3D scenes by simulating the physical process of image formation.
渲染通过模拟图像形成的物理过程,架起了2D视觉和3D场景之间的桥梁。.
By inverting such renderer, one can think of a learning approach to infer 3D information from 2D images.
通过反转这种渲染器,可以想到一种从2D图像推断3D信息的学习方法。.
However, standard graphics renderers involve a fundamental step called rasterization, which prevents rendering to be differentiable.
然而,标准图形渲染器涉及一个称为光栅化的基本步骤,这会阻止渲染的可微性。.
Unlike the state-of-the-art differentiable renderers (Kato et al.
与最先进的可微渲染器不同(Kato等人。.
2018 and Loper 2018), which only approximate the rendering gradient in the backpropagation, we propose a natually differentiable rendering framework that is able to (1) directly render colorized mesh using differentiable functions and (2) back-propagate efficient supervisions to mesh vertices and their attributes from various forms of image representations.
2018年和Loper 2018年),我们提出了一个自然可微的渲染框架,它能够(1)使用可微函数直接渲染彩色网格,以及(2)从各种形式的图像表示向网格顶点及其属性反向传播有效的监控。.
The key to our framework is a novel formulation that views rendering as an aggregation function that fuses the probabilistic contributions of all mesh triangles with respect to the rendered pixels.
我们的框架的关键是一个新的公式,它将渲染视为一个聚合函数,它融合了所有网格三角形相对于渲染像素的概率贡献。.
Such formulation enables our framework to flow gradients to the occluded and distant vertices, which cannot be achieved by the previous state-of-the-arts.
这样的公式使我们的框架能够将梯度流到被遮挡和远处的顶点,这是以前的技术无法实现的。.
We show that by using the proposed renderer, one can achieve significant improvement in 3D unsupervised single-view reconstruction both qualitatively and quantitatively.
我们表明,通过使用所提出的渲染器,可以在三维无监督单视图重建中实现定性和定量的显著改进。.
Experiments also demonstrate that our approach can handle the challenging tasks in image-based shape fitting, which remain nontrivial to existing differentiable renders…
实验还表明,我们的方法可以处理基于图像的形状拟合中的挑战性任务,这些任务对于现有的可微渲染来说并不重要。。.
作者(Authors)
[‘Shichen Liu’, ‘Tianye Li’, ‘Weikai Chen’, ‘Hao Li’]