ACMMM-2024 扩散模型(Diffusion Model)相关论文(43篇)
StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/00f3f99f27
文章链接: (https://openreview.net/forum?id=jnQFcUU9Bw)
Non-uniform Timestep Sampling: Towards Faster Diffusion Model Training
文章解读: http://www.studyai.com/xueshu/paper/detail/0866ce41ef
文章链接: (https://openreview.net/forum?id=NQPJYEyiiM)
Geometry-Guided Diffusion Model with Masked Transformer for Robust Multi-View 3D Human Pose Estimation
文章解读: http://www.studyai.com/xueshu/paper/detail/0be538bdf1
文章链接: (https://openreview.net/forum?id=z9nEV02Ujx)
Product2IMG: Prompt-Free E-commerce Product Background Generation with Diffusion Model and Self-Improved LMM
文章解读: http://www.studyai.com/xueshu/paper/detail/0c0a5d4075
文章链接: (https://openreview.net/forum?id=Af8QoxY78G)
EvilEdit: Backdooring Text-to-Image Diffusion Models in One Second
文章解读: http://www.studyai.com/xueshu/paper/detail/0e03ff0ff2
文章链接: (https://openreview.net/forum?id=ibEaSS6bQn)
ClickDiff: Click to Induce Semantic Contact Map for Controllable Grasp Generation with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/11405ff091
文章链接: (https://openreview.net/forum?id=WOp8uEVcFt)
FreePIH: Training-Free Painterly Image Harmonization with Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/13d06b5931
文章链接: (https://openreview.net/forum?id=de7GoqU3Uv)
PathUp: Patch-wise Timestep Tracking for Multi-class Large Pathology Image Synthesising Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/1a85e91c0b
文章链接: (https://openreview.net/forum?id=A7VkIoEELI)
Fuse Your Latents: Video Editing with Multi-source Latent Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/1c6ed7975c
文章链接: (https://openreview.net/forum?id=bb0M2WYeng)
TreeReward: Improve Diffusion Model via Tree-Structured Feedback Learning
文章解读: http://www.studyai.com/xueshu/paper/detail/298d656f60
文章链接: (https://openreview.net/forum?id=ZXTY6h5f8d)
Cons2Plan: Vector Floorplan Generation from Various Conditions via a Learning Framework based on Conditional Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/3677e913c8
文章链接: (https://openreview.net/forum?id=xnpEpIqjUU)
LDStega: Practical and Robust Generative Image Steganography based on Latent Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/3ec736af5a
文章链接: (https://openreview.net/forum?id=kEqGgMgIlu)
QNCD: Quantization Noise Correction for Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/410e6750aa
文章链接: (https://openreview.net/forum?id=0aijVq844S)
Investigating Conceptual Blending of a Diffusion Model for Improving Nonword-to-Image Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/426256a628
文章链接: (https://openreview.net/forum?id=EZHxCOnV7n)
Mitigating Social Biases in Text-to-Image Diffusion Models via Linguistic-Aligned Attention Guidance
文章解读: http://www.studyai.com/xueshu/paper/detail/45993730c4
文章链接: (https://openreview.net/forum?id=rtjZHEOcHx)
Speech Reconstruction from Silent Lip and Tongue Articulation by Diffusion Models and Text-Guided Pseudo Target Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/534f552cff
文章链接: (https://openreview.net/forum?id=M87zOOryOG)
MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6204af24ed
文章链接: (https://openreview.net/forum?id=rLw5583hMb)
QVD: Post-training Quantization for Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/652776b476
文章链接: (https://openreview.net/forum?id=Fz6FxJ4gJr)
IconDM: Text-Guided Icon Set Expansion Using Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6882abb14e
文章链接: (https://openreview.net/forum?id=SsVVrDheMH)
CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6c62f193d4
文章链接: (https://openreview.net/forum?id=0j60hdbzln)
Multi-Modal Diffusion Model for Recommendation
文章解读: http://www.studyai.com/xueshu/paper/detail/6e262ae643
文章链接: (https://openreview.net/forum?id=5QE0Hf37Le)
FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/759b4833a7
文章链接: (https://openreview.net/forum?id=bw3xRlHRtC)
MM-LDM: Multi-Modal Latent Diffusion Model for Sounding Video Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/796e422bea
文章链接: (https://openreview.net/forum?id=6PSVsL2kYi)
Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/800e8af903
文章链接: (https://openreview.net/forum?id=l64w1TI1T8)
Consistency Guided Diffusion Model with Neural Syntax for Perceptual Image Compression
文章解读: http://www.studyai.com/xueshu/paper/detail/852e64ef06
文章链接: (https://openreview.net/forum?id=nSUMQhITdd)
Motion-aware Latent Diffusion Models for Video Frame Interpolation
文章解读: http://www.studyai.com/xueshu/paper/detail/85b703c1e4
文章链接: (https://openreview.net/forum?id=u0geEr7X2O)
Attentive Linguistic Tracking in Diffusion Models for Training-free Text-guided Image Editing
文章解读: http://www.studyai.com/xueshu/paper/detail/8d40c07f77
文章链接: (https://openreview.net/forum?id=efTur2naAS)
Data Generation Scheme for Thermal Modality with Edge-Guided Adversarial Conditional Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/8e4ff4c2da
文章链接: (https://openreview.net/forum?id=GSmdnRqbpD)
Conditional Diffusion Model for Open-ended Video Question Answering
文章解读: http://www.studyai.com/xueshu/paper/detail/935c6609d9
文章链接: (https://openreview.net/forum?id=5WdYACFOhI)
FedDEO: Description-Enhanced One-Shot Federated Learning with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/944126da61
文章链接: (https://openreview.net/forum?id=fodBlwAFMZ)
Digging into contrastive learning for robust depth estimation with diffusion models
文章解读: http://www.studyai.com/xueshu/paper/detail/95d2f43809
文章链接: (https://openreview.net/forum?id=eyYcMjUtJ4)
FD2Talk: Towards Generalized Talking Head Generation with Facial Decoupled Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/98e632ae3d
文章链接: (https://openreview.net/forum?id=rdN6HJo3hD)
UniDense: Unleashing Diffusion Models with Meta-Routers for Universal Few-Shot Dense Prediction
文章解读: http://www.studyai.com/xueshu/paper/detail/9922339e61
文章链接: (https://openreview.net/forum?id=I8s3kmD82D)
Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/9fd4f2cb3b
文章链接: (https://openreview.net/forum?id=VEHNTupyIU)
CFDiffusion: Controllable Foreground Relighting in Image Compositing via Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/abcfbee699
文章链接: (https://openreview.net/forum?id=jFlt7lbZoB)
Unpaired Photo-realistic Image Deraining with Energy-informed Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/aca6ebfd3a
文章链接: (https://openreview.net/forum?id=9ACKEhyS8u)
Towards Photorealistic Video Colorization via Gated Color-Guided Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/ae1e1c3317
文章链接: (https://openreview.net/forum?id=4k79es7Guv)
PROMOTE: Prior-Guided Diffusion Model with Global-Local Contrastive Learning for Exemplar-Based Image Translation
文章解读: http://www.studyai.com/xueshu/paper/detail/b28a618ef7
文章链接: (https://openreview.net/forum?id=w1fvy1Bhqj)
Interpretable Matching of Optical-SAR Image via Dynamically Conditioned Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/beadb90de4
文章链接: (https://openreview.net/forum?id=clKjOYw22x)
DreamVTON: Customizing 3D Virtual Try-on with Personalized Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/d536d35346
文章链接: (https://openreview.net/forum?id=AVWZuwrl8l)
JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement
文章解读: http://www.studyai.com/xueshu/paper/detail/e95850d552
文章链接: (https://openreview.net/forum?id=kE1mWdsJRm)
Decoder-Only LLMs are Better Controllers for Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/eb9eb754e7
文章链接: (https://openreview.net/forum?id=0nEEsPOT0r)