图像超分辨率SPSR:利用梯度信息来保持图像结构

本文介绍了如何利用梯度信息改进图像超分辨率技术,以保持图像结构的稳定性。通过添加一个梯度分支辅助网络学习,结合L1、感知损失和GAN损失,避免传统方法导致的图像平滑和模糊,以及GAN产生的不真实细节。实验结果显示,这种方法在保持图像细节和结构方面表现出色。
摘要由CSDN通过智能技术生成

利用图像梯度信息使复原图像具有更稳定的结构

    本文是对Structure-Preserving Super Resolution with Gradient Guidance一文进行介绍

概述

    在传统的图像超分中,往往以PSNR作为优化目标。所以许多的方法都使用L2,L1 loss作为网络的优化目标。但是由于从低分辨率到高分辨率的过程并不是单一的,所以网络预测的结果往往是多张可能图像的平均。这会造成图像的平滑和模糊。为了解决这个问题,在近些年,以感知为目标的图像超分辨率方法引起了很多的关注。
    这些方法基本都以GAN为基础,但是GAN会可能生成一些不真实的细节,产生一些混乱的结构。如图所示:
在这里插入图片描述

    可以看到,SRGAN,ESRGAN这些使用GAN的方法,在图像中会产生扭曲和混乱。这在真实应用场景下带来的结果是灾难的。所以本文想采取一种方式,能够具有GAN的优点,同时尽量使生成的图像中的细节能够更稳定。因此本文提出了使用图像的梯度信息作为额外的监督信息和约束,以此让模型能够更专注于图像中的细节部分。同时,这种方法与模型无关,可以使用到任意的超分辨率模型中。

方法

    本文方法主要思路也非常简单,就是为网络提供了一个辅助任务的分支,以LR图像的梯度图作为输入,最终预测HR图像的梯度图。网络结构图如下:
在这里插入图片描述
    基础的网络使用了和ESRGAN相同的结构,在第5th, 10th, 15th, 20th层的特征图会被送到Gradient Branch进行融合。这样在训练时Gradien Branch的梯度也能回传到主分支SR Branch中,以此来影响主分支的参数更新。网络结构并不是此文的重点,可以使用任意的SR网络替换图中的网络结构。
    图中梯度分支的输入是由输入的图像计算梯度得到,计算的方式也很简单:
I x ( X ) = I ( x + 1 , y ) − I ( x − 1 , y ) I_{x}(X)=I(x+1,y)-I(x-1,y) Ix(X)=I(x+1,y)I(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值