大一高数知识点总结
大一高数知识点总结
篇一:
大一高数知识点
,
重难点整理
第一章
基础知识部分
1.1
初等函数
一、函数的概念
1
、
函数的定义
函数是从量的角度对运动变化的抽象表述,
是一种
刻画运动变化中变化量相依关系的数学模型。
设有两个变量
x
与
y
,
如果对于变量
x
在实数集合
D
内的每一个值,
变量
y
按照一定的法则
都有唯一的值与之对应,那么就称
x
是自变量,
y
是
x
的函数
,记
作
y=f
(
x
)
,其中自变量
x
取值的集合
D
叫函数的定义域,函数值的
集合叫做函数的值域。
2
、函数的表示方法
(
1
)解析法
即用解析式(或称数学式)表示函数。如
y=2x+1,
y=
︱
x
︱,
y=lg(x+1),y=sin3x
等。
便于对函数进行精确地计算和深入
分析。
(
2
)
列表法
即用表格形式给出两个变量之间函数关系的方法。
便
于差的某一处的函数值。
(
3
)图像法
即用图像来表示函数关系的方法
非常形象直观,能
从图像上看出函数的某些特性。
分段函数——即当自变量取不同值
时,函数的表达式不一样,如
1??2x?1, x?0?xsin,
f?x???y??x ?2x?1,x?0???0 x?0 x?0
隐函数——相对于显函数而言
的一种函数形式。
所谓显函数,
即直接用含自变量的式子表示的函数,
如
y=x2+2x+3
,这是常见的函数形式。而隐函数是指变量
x
、
y
之间
的函数关系式是由一个含
x
,
y
的方程
F(x,y)=0
给出的,
如
2x+y-3=0
,
e
可得
y=3-2x
,即该隐函数可化为显函数。
参数式函数——若变量
x,y
之间的函数关系是通过参数式方程
? x?y
而由
2x+y-3=0?x?y?0
等。
?x???t?
,
?t?T?
给出的,
??y??t?
这样的函数称为由参数方程
确定的函数,简称参数式方程,
t
称为参数。
反函数——如果在已