大一高数下册笔记整理_大一高数知识点总结

本文总结了大一高数下册的重点内容,包括函数的概念、表示方法,如解析法、列表法和图像法,并介绍了分段函数、隐函数、参数式函数以及反函数的定义和特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大一高数知识点总结

大一高数知识点总结

篇一:

大一高数知识点

,

重难点整理

第一章

基础知识部分

1.1

初等函数

一、函数的概念

1

函数的定义

函数是从量的角度对运动变化的抽象表述,

是一种

刻画运动变化中变化量相依关系的数学模型。

设有两个变量

x

y

如果对于变量

x

在实数集合

D

内的每一个值,

变量

y

按照一定的法则

都有唯一的值与之对应,那么就称

x

是自变量,

y

x

的函数

,记

y=f

(

x

)

,其中自变量

x

取值的集合

D

叫函数的定义域,函数值的

集合叫做函数的值域。

2

、函数的表示方法

(

1

)解析法

即用解析式(或称数学式)表示函数。如

y=2x+1,

y=

x

︱,

y=lg(x+1),y=sin3x

等。

便于对函数进行精确地计算和深入

分析。

(

2

)

列表法

即用表格形式给出两个变量之间函数关系的方法。

便

于差的某一处的函数值。

(

3

)图像法

即用图像来表示函数关系的方法

非常形象直观,能

从图像上看出函数的某些特性。

分段函数——即当自变量取不同值

时,函数的表达式不一样,如

1??2x?1, x?0?xsin,

f?x???y??x ?2x?1,x?0???0 x?0 x?0

隐函数——相对于显函数而言

的一种函数形式。

所谓显函数,

即直接用含自变量的式子表示的函数,

y=x2+2x+3

,这是常见的函数形式。而隐函数是指变量

x

y

之间

的函数关系式是由一个含

x

y

的方程

F(x,y)=0

给出的,

2x+y-3=0

e

可得

y=3-2x

,即该隐函数可化为显函数。

参数式函数——若变量

x,y

之间的函数关系是通过参数式方程

? x?y

而由

2x+y-3=0?x?y?0

等。

?x???t?

?t?T?

给出的,

??y??t?

这样的函数称为由参数方程

确定的函数,简称参数式方程,

t

称为参数。

反函数——如果在已

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值