- 博客(6)
- 收藏
- 关注
原创 Pytorch 基于 Detectron2 从零实现 Unet
Detectron2 的基本流程已经搞得差不多了,正好最近在尝试用 Unet 做一些简单的语义分割,闲着没事就准备把 Unet 搬到 Detectron2 上面来。比起复杂的目标检测模型,语义分割模型实现起来还是比较简单的,因为它无需生成先验框以及实现复杂的 loss 计算,直接卷积出热力图再接 softmax 然后送进 CrossEntropy 就行了… (指 Unet)。总的来说实现 Unet 的代码量不会很大,因此正好拿来练手…首先确定代码思路,有哪些参数是我们希望可以自由调节的。从我的任务来看,我
2021-05-22 12:49:48 4081 9
原创 Detectron2 代码解读 (1) 如何构造一个模型
读完官方文档之后对 Detectron2 已经有了基本了解。这个框架各个组件定义的非常完善,从创建模型到训练模型再到测试模型,每一步官方都提供了抽象,基本流程是这样的:准备数据集 – 注册COCO格式数据集或者使用自定义结构数据集,注册 DatasetCatalog 和 MetadataCatalog,告诉模型如何提取你的数据。数据集加载进入 Dataloader – 可以使用 build_detection_train_loader 和 build_detection_test_loader
2021-05-06 15:06:19 4438 1
原创 Detectron2 官方文档详细解读 (下)
7. 数据增强链接:https://detectron2.readthedocs.io/en/latest/tutorials/getting_started.html数据增强是训练中很重要的一个环节,Detectron2 的数据增强需要达成一下目标:可以同时对很多种数据进行数据增强(比如图片,gt框,gt边缘等等)。可以同时进行很多种数据增强。可以允许自定义数据增强类型。可以在中途对数据增强进行控制。前两种基本满足了大部分需求。这一部分介绍如何根据自己想用的数据增强来创建新的 Datal
2021-04-30 17:35:09 4061 2
原创 Detectron2 官方文档详细解读 (上)
Detectron2 官方文档阅读(上)1. 安装需求:Linux 或 macOS,Python >= 3.6PyTorch >= 1.6 以及对应版本的 torchvisionOpencv(可选),demo以及可视化输出需要gcc & g++ >= 5.4,ninja(可选)具体安装部分略,请查看官方文档。2. 快速开始这部分简单介绍detectron2的一些内置命令行工具。使用预训练的模型(1) 从 model zoo 中选择一个模型和对应的confi
2021-04-30 08:12:19 7820 1
原创 Detectron2 “快速开始” Detection Tutorial Colab Notebook 详细解读
Detectron快速上手官方 Colab Notebook 上 Getting Started 部分阅读:1. 使用预训练的Detectron2模型下载一张图片,我们需要创建detectron2 config,随后根据config创建一个Default Predictor去进行单张图片推理。cfg = get_cfg() # 获取 Default Config# 根据 mask_rcnn_R_50_FPN_3x.yaml 的配置文件更新 configcfg.merge_from_file(mo
2021-04-30 08:04:39 2728
原创 Facebook计算机视觉开源框架Detectron2学习笔记 --- 从demo到训练自己的模型
开始之前首先声明一下,我刚入坑深度学习,甚至可以说刚入坑计算机,这一系列博客仅仅是我个人的一个学习笔记,主要面向新手。因为现在很多 Detectron2 的分析其实都是面向老手(实际上刚入坑的新人也不会上来就接触 Detectron2 这种框架),很多细节部分可能大佬们觉得很简单就略过了,但是对于新手而言要费很长时间研究。因此这一系列文章仅仅记录一下我使用 Detectron2 过程中的学习历程以及踩过得坑,如果哪里有问题欢迎指正!刚入坑深度学习不久,始终在研究CV的目标检测任务,现在常见的单阶段检测器
2021-04-30 07:58:18 2766 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人