c语言实现补码加减,C语言实现用位移运算符进行加减乘…

最近,在百度知道上回答问题,然后看见有的人问如何用位移运算符去进行加减乘除运算,于是巩固今天就在这总结一下。

先讲讲总体思路:

加法运算:将一个整数用二进制表示,其加法运算就是:相异(^)时,本位为1,进位为0;同为1时本位为0,进位为1;同为0时,本位进位均为0.所以,不计进位的和为sum

= a^b,进位就是arr =

a&b,(与sum相加时先左移一位,因为这是进位)。完成加法直到进位为0.

减法运算:a-b  =

a+(-b)  根据补码的特性,各位取反加1即可(注意得到的是相反数,不是该数的补码,因为符号位改变了)

(上面用二进制实现的加减法可以直接应用于负数)

乘法运算:原理上还是通过加法计算。将b个a相加,注意下面实际的代码。

除法运算:除法运算是乘法的逆。看a最多能减去多少个b。

1、加法:

int AddWithoutArithmetic(int num1,int

num2)

{

if(num2==0) return num1;//没有进位的时候完成运算

int sum,carry;

sum=num1^num2;//完成第一步没有进位的加法运算

carry=(num1&num2)<<1;//完成第二步进位并且左移运算

return AddWithoutArithmetic(sum,carry);//进行递归,相加

}

其实这个还可以写得更简单,我们用的思路就是先不计进位相加,然后再与进位相加,随着递归,进位会变为0,递归结束。代码如下:

int Add(int a,int b)

{

return b ? Add(a^b,(a&b)<<1) : a;

}

当然递归有时候不好理解,所以我有写个不用递归的:

int Add(int a, int b)

{

int ans;

while(b)

{

//直到没有进位

ans = a^b;

//不带进位加法

b = ((a&b)<<1);

//进位

a = ans;

}

return a;

}

2、减法:

//这个和加法一样了,首先取减数的补码,然后相加。

int negtive(int a)

//取补码

{

return Add(~a, 1);

}

int Sub(int a, int b)

{

return Add(a, negtive(b));

}

3、正数乘法运算:

//正数乘法运算

int Pos_Multiply(int a,int b)

{

int ans = 0;

while(b)

{

if(b&1)

ans = Add(ans, a);

a = (a<<1);

b = (b>>1);

}

return ans;

}

4、正整数除法:

//除法就是由乘法的过程逆推,依次减掉(如果x够减的)y^(2^31),y^(2^30),...y^8,y^4,y^2,y^1。减掉相应数量的y就在结果加上相应的数量。

int Pos_Div(int x,int y)

{

int ans=0;

for(int i=31;i>=0;i--)

{

//比较x是否大于y的(1<

if((x>>i)>=y)

{

ans+=(1<

x-=(y<

}

}

return ans;

}

最后汇总一下:

// 加减乘除位运算

// 程序中实现了比较大小、加减乘除运算。所有运算都用位操作实现

// 在实现除法运算时,用了从高位到低位的减法

// 具体如下,算法也比较简单,所以没有作注释

#include

#include

using namespace std;

int Add(int a, int b)

{

int ans;

while(b)

{

//直到没有进位

ans = a^b;

//不带进位加法

b = ((a&b)<<1);

//进位

a = ans;

}

return a;

}

//这个和加法一样了,首先取减数的补码,然后相加。

int negtive(int a)

//取补码

{

return Add(~a, 1);

}

int Sub(int a, int b)

{

return Add(a, negtive(b));

}

// 判断正负

int ispos( int a )

{ //正

return (a&0xFFFF) && !(a&0x8000);

}

int isneg( int a )

{ //负

return a&0x8000;

}

int iszero( int a )

{ //0

return !(a&0xFFFF);

}

//正数乘法运算

int Pos_Multiply(int a,int b)

{

int ans = 0;

while(b)

{

if(b&1)

ans = Add(ans, a);

a = (a<<1);

b = (b>>1);

}

return ans;

}

//乘法运算

int Multiply(int a,int b)

{

if( iszero(a) || iszero(b) )

return 0;

if( ispos(a) && ispos(b) )

return Pos_Multiply(a, b);

if( isneg(a) )

{

if( isneg(b) )

{

return Pos_Multiply( negtive(a), negtive(b) );

}

return negtive( Pos_Multiply(

negtive(a), b ) );

}

return negtive( Pos_Multiply(a, negtive(b)) );

}

//除法就是由乘法的过程逆推,依次减掉(如果x够减的)y^(2^31),y^(2^30),...y^8,y^4,y^2,y^1。减掉相应数量的y就在结果加上相应的数量。

int Pos_Div(int x,int y)

{

int ans=0;

for(int i=31;i>=0;i--)

{

//比较x是否大于y的(1<

if((x>>i)>=y)

{

ans+=(1<

x-=(y<

}

}

return ans;

}

//除法运算

int MyDiv( int a, int b )

{

if( iszero(b) )

{

cout << "Error"

<< endl;

exit(1);

}

if( iszero(a) )

return 0;

if( ispos(a) )

{

if( ispos(b) )

return Pos_Div(a, b);

return negtive( Pos_Div( a,

negtive(b)) );

}

if( ispos(b) )

return negtive( Pos_Div(

negtive(a), b ) );

return Pos_Div( negtive(a), negtive(b) );

}

// 比较两个正数的大小(非负也可)

int isbig_pos( int a, int b )

{  //a>b>0

int c = 1;

b

= (a^b);

if( iszero(b) )

return 0;

while( b >>= 1 )

{

c <<= 1;

}

return (c&a);

}

// 比较两个数的大小

int isbig( int a, int b )

{ //a>b

if( isneg(a) )

{

if( isneg(b) )

{

return isbig_pos( negtive(b), negtive(a) );

}

return 0;

}

if( isneg(b) )

return 1;

return isbig_pos(a, b);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值