最近,在百度知道上回答问题,然后看见有的人问如何用位移运算符去进行加减乘除运算,于是巩固今天就在这总结一下。
先讲讲总体思路:
加法运算:将一个整数用二进制表示,其加法运算就是:相异(^)时,本位为1,进位为0;同为1时本位为0,进位为1;同为0时,本位进位均为0.所以,不计进位的和为sum
= a^b,进位就是arr =
a&b,(与sum相加时先左移一位,因为这是进位)。完成加法直到进位为0.
减法运算:a-b =
a+(-b) 根据补码的特性,各位取反加1即可(注意得到的是相反数,不是该数的补码,因为符号位改变了)
(上面用二进制实现的加减法可以直接应用于负数)
乘法运算:原理上还是通过加法计算。将b个a相加,注意下面实际的代码。
除法运算:除法运算是乘法的逆。看a最多能减去多少个b。
1、加法:
int AddWithoutArithmetic(int num1,int
num2)
{
if(num2==0) return num1;//没有进位的时候完成运算
int sum,carry;
sum=num1^num2;//完成第一步没有进位的加法运算
carry=(num1&num2)<<1;//完成第二步进位并且左移运算
return AddWithoutArithmetic(sum,carry);//进行递归,相加
}
其实这个还可以写得更简单,我们用的思路就是先不计进位相加,然后再与进位相加,随着递归,进位会变为0,递归结束。代码如下:
int Add(int a,int b)
{
return b ? Add(a^b,(a&b)<<1) : a;
}
当然递归有时候不好理解,所以我有写个不用递归的:
int Add(int a, int b)
{
int ans;
while(b)
{
//直到没有进位
ans = a^b;
//不带进位加法
b = ((a&b)<<1);
//进位
a = ans;
}
return a;
}
2、减法:
//这个和加法一样了,首先取减数的补码,然后相加。
int negtive(int a)
//取补码
{
return Add(~a, 1);
}
int Sub(int a, int b)
{
return Add(a, negtive(b));
}
3、正数乘法运算:
//正数乘法运算
int Pos_Multiply(int a,int b)
{
int ans = 0;
while(b)
{
if(b&1)
ans = Add(ans, a);
a = (a<<1);
b = (b>>1);
}
return ans;
}
4、正整数除法:
//除法就是由乘法的过程逆推,依次减掉(如果x够减的)y^(2^31),y^(2^30),...y^8,y^4,y^2,y^1。减掉相应数量的y就在结果加上相应的数量。
int Pos_Div(int x,int y)
{
int ans=0;
for(int i=31;i>=0;i--)
{
//比较x是否大于y的(1<
if((x>>i)>=y)
{
ans+=(1<
x-=(y<
}
}
return ans;
}
最后汇总一下:
// 加减乘除位运算
// 程序中实现了比较大小、加减乘除运算。所有运算都用位操作实现
// 在实现除法运算时,用了从高位到低位的减法
// 具体如下,算法也比较简单,所以没有作注释
#include
#include
using namespace std;
int Add(int a, int b)
{
int ans;
while(b)
{
//直到没有进位
ans = a^b;
//不带进位加法
b = ((a&b)<<1);
//进位
a = ans;
}
return a;
}
//这个和加法一样了,首先取减数的补码,然后相加。
int negtive(int a)
//取补码
{
return Add(~a, 1);
}
int Sub(int a, int b)
{
return Add(a, negtive(b));
}
// 判断正负
int ispos( int a )
{ //正
return (a&0xFFFF) && !(a&0x8000);
}
int isneg( int a )
{ //负
return a&0x8000;
}
int iszero( int a )
{ //0
return !(a&0xFFFF);
}
//正数乘法运算
int Pos_Multiply(int a,int b)
{
int ans = 0;
while(b)
{
if(b&1)
ans = Add(ans, a);
a = (a<<1);
b = (b>>1);
}
return ans;
}
//乘法运算
int Multiply(int a,int b)
{
if( iszero(a) || iszero(b) )
return 0;
if( ispos(a) && ispos(b) )
return Pos_Multiply(a, b);
if( isneg(a) )
{
if( isneg(b) )
{
return Pos_Multiply( negtive(a), negtive(b) );
}
return negtive( Pos_Multiply(
negtive(a), b ) );
}
return negtive( Pos_Multiply(a, negtive(b)) );
}
//除法就是由乘法的过程逆推,依次减掉(如果x够减的)y^(2^31),y^(2^30),...y^8,y^4,y^2,y^1。减掉相应数量的y就在结果加上相应的数量。
int Pos_Div(int x,int y)
{
int ans=0;
for(int i=31;i>=0;i--)
{
//比较x是否大于y的(1<
if((x>>i)>=y)
{
ans+=(1<
x-=(y<
}
}
return ans;
}
//除法运算
int MyDiv( int a, int b )
{
if( iszero(b) )
{
cout << "Error"
<< endl;
exit(1);
}
if( iszero(a) )
return 0;
if( ispos(a) )
{
if( ispos(b) )
return Pos_Div(a, b);
return negtive( Pos_Div( a,
negtive(b)) );
}
if( ispos(b) )
return negtive( Pos_Div(
negtive(a), b ) );
return Pos_Div( negtive(a), negtive(b) );
}
// 比较两个正数的大小(非负也可)
int isbig_pos( int a, int b )
{ //a>b>0
int c = 1;
b
= (a^b);
if( iszero(b) )
return 0;
while( b >>= 1 )
{
c <<= 1;
}
return (c&a);
}
// 比较两个数的大小
int isbig( int a, int b )
{ //a>b
if( isneg(a) )
{
if( isneg(b) )
{
return isbig_pos( negtive(b), negtive(a) );
}
return 0;
}
if( isneg(b) )
return 1;
return isbig_pos(a, b);
}